Detección de eventos respiratorios en señales polisomnográficas
Professor Advisor
dc.contributor.advisor
Estévez Montero, Claudio
Author
dc.contributor.author
Feller Goudie, Jaime José
Associate professor
dc.contributor.other
Ríos Pérez, Sebastián
Associate professor
dc.contributor.other
Poblete Labra, Bárbara
Admission date
dc.date.accessioned
2018-03-09T14:14:46Z
Available date
dc.date.available
2018-03-09T14:14:46Z
Publication date
dc.date.issued
2017
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/146809
General note
dc.description
Ingeniero Civil Eléctrico
es_ES
Abstract
dc.description.abstract
Las enfermedades respiratorias son un grupo de enfermedades que afectan, como su nombre lo indica, el sistema respiratorio de las personas. En chile, estas están catalogadas como la tercera gran causa de muerte en Chile [1]. En particular, el Sindrome de Apnea e Hipopnea Obstructiva del Sueño (SAHOS) afecta al 4% de la población adulta [2] [3], y lleva consigo riesgos derivados de que interrumpe el ciclo normal de sueño.
El siguiente trabajo plantea el modelamiento de un clasificador que sea capaz de identificar los distintos tipos de episodios respiratorios asociados al SAHOS, apneas de distinto tipo (central, mixta u obstructiva) o hipopnea. Como consecuencia directa, se pretende obtener los sensores más relevantes para construir un polisomnógrafo.
Mediante el pre-procesamiento y obtención de datos estadísticos de exámenes de polisomnografía validados por personal médico, posterior entrenamiento y validación de distintos clasificadores; reglas difusas, arboles de decisión, redes neuronales y support vector machine; Se construye un clasificador que agrega un subconjunto de ellos para decidir a qué clase de episodio pertenece cada evento buscando un alto cociente de posibilidades de diagnóstico (DOR).
Debido a la complejidad de procesar múltiples datos se plantea utilizar métodos de reducción de variables mediante random forest/tree ensemble, logrando reducir estas a un 10% con una varianza no superior al 22% en la exactitud de los clasificadores respecto al ejercicio realizado con todas las variables. Esto se traduce en proponer una reducción del número de sensores ocupados en un examen polisomnográfico desde más de 20 a un conjunto de 8 que contiene la mayor parte de la información para lo que respecta a la diferenciación de episodios. Estos sensores concuerdan con las señales que son de especial cuidado cuando se estudia el SAHOS.
Se logra proponer un clasificador que diferencia entre los distintos episodios, pero no así uno que permita diferenciar entre la presencia o ausencia de estos, debido principalmente al hecho de no contar con una base de datos adecuada, esto último se deduce al comparar el desempeño de los clasificadores al introducir un grupo de control generado con estados de sueño normal de los mismos pacientes. El clasificador construido tiene un índice de acierto de sobre el 70%, con un error del tipo I cercano al 20% y error tipo II cercano 8%, la exactitud de este es sobre el 79% y el DOR superior a 10 para cada tipo de episodio.
Debido a la dificultad de conseguir este tipo de exámenes, en parte dado por su costo, tanto monetario como en recursos, no se pudo trabajar con una base de datos extensa. Como trabajo futuro se recomienda realizar estos experimentos con una base de datos que contenga exámenes realizados a personas que no presentan SAHOS, para de esta manera se obtenga una base de datos limpia para caracterizar las diferencias entre un paciente sano y uno enfermo.