Show simple item record

Authordc.contributor.authorFlock, Mario 
Authordc.contributor.authorNelson, Richard P. 
Authordc.contributor.authorTurner, Neal J. 
Authordc.contributor.authorBertrang, Gesa H.-M. 
Authordc.contributor.authorCarrasco González, Carlos 
Authordc.contributor.authorHenning, Thomas 
Authordc.contributor.authorLyra, Wladimir 
Authordc.contributor.authorTeague, Richard 
Admission datedc.date.accessioned2018-05-09T20:11:41Z
Available datedc.date.available2018-05-09T20:11:41Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationAstronomical Journal 2017, 850(2):131es_ES
Identifierdc.identifier.other10.3847/1538-4357/aa943f
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/147603
Abstractdc.description.abstractPlanets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s(-1), in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.es_ES
Patrocinadordc.description.sponsorshipEuropean Research Council under the European Union's Seventh Framework Programme (FP7)/ERC, 258729 / NASA Exoplanet Research program, 14XRP14_20153, 16-XRP16 20065 / STFC, ST/P000592/1, ST/M001202/1/ CONICYT through FONDECYT, 3170657 / Millennium Science Initiative (Chilean Ministry of Economy), RC13007 / Space Telescope Science Institute, HST-AR-14572 / National Science Foundation, NSF PHY-1125915es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishing Ltdes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAstronomical Journales_ES
Keywordsdc.subjectAccretiones_ES
Keywordsdc.subjectAccretion diskses_ES
Keywordsdc.subjectHydrodynamicses_ES
Keywordsdc.subjectProtoplanetary diskses_ES
Keywordsdc.subjectRadiative transferes_ES
Keywordsdc.subjectTurbulencees_ES
Títulodc.titleRadiation hydrodynamical turbulence in protoplanetary disks: Numerical models and observational constraintses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile