Show simple item record

Authordc.contributor.authorNitschke, Fabián 
Authordc.contributor.authorHeld, Sebastián 
Authordc.contributor.authorVillalón, Ignacio 
Authordc.contributor.authorNeumann, Thomas 
Authordc.contributor.authorKohl, Thomas 
Admission datedc.date.accessioned2018-06-13T19:43:26Z
Available datedc.date.available2018-06-13T19:43:26Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationGeotherm Energy (2017) 5:12es_ES
Identifierdc.identifier.other10.1186/s40517-017-0070-3
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/148837
Abstractdc.description.abstractThe determination of reservoir temperatures represents a major task when exploring geothermal systems. Since the uncertainties of classical solute geothermometry are still preventing reliable reservoir temperature estimations, we assess the performance of classical geothermometers and multicomponent geothermometry by applying them to fluids composed from long-term batch-type equilibration experiments and to fluids from natural geothermal springs in the Villarrica area, Southern Chile. The experiments, weathering two reservoir rock analogues from the Villarrica area, highlight a strong impact of reservoir rock composition on the fluid chemistry and, consequently, on calculated in situ temperatures. Especially temperatures calculated from classical solute geothermometry are strongly affected. Multicomponent geothermometry is obviously more robust and independent from rock composition leading to significantly smaller temperature spreads. In a sensitivity analysis, the dilution of geothermal fluid with surficial water, the pH and the aluminum concentration are anticipated to be the factors causing underestimations of reservoir temperatures. We quantify these parameters and correct the results to obtain realistic in situ conditions. Thus, enabling the application of the method also on basis of standard fluid analysis, our approach represents an easy-to-use modification of the original multicomponent geothermometry leading to very plausible subsurface temperatures with significantly low scattering.es_ES
Patrocinadordc.description.sponsorshipBMBF-CONICYT International Scientific Collaborative Research Program FKZ 01DN14033/PCCI130025 topic "Geothermal Energy Systems" of the Helmholtz portfolio project "Geoenergy" EnBW Energie Baden-Wurttemberg AGes_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceGeotherm Energyes_ES
Keywordsdc.subjectMulticomponent geothermometryes_ES
Keywordsdc.subjectClassical solute geothermometerses_ES
Keywordsdc.subjectLaboratory alteration experimentses_ES
Títulodc.titleAssessment of performance and parameter sensitivity of multicomponent geothermometry applied to a medium enthalpy geothermal systemes_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile