Weak solutions of semilinear elliptic equation involving Dirac mass
Author
dc.contributor.author
Chen, Huyuan
Author
dc.contributor.author
Felmer Aichele, Patricio
Author
dc.contributor.author
Yang, Jianfu
Admission date
dc.date.accessioned
2018-07-24T22:34:25Z
Available date
dc.date.available
2018-07-24T22:34:25Z
Publication date
dc.date.issued
2018
Cita de ítem
dc.identifier.citation
Ann. I.H.Poincaré–AN 35 (2018): 729–750
es_ES
Identifier
dc.identifier.other
10.1016/j.anihpc.2017.08.001
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/150234
Abstract
dc.description.abstract
In this paper, we study the elliptic problem with Dirac mass
{ -Delta u = Vu(p) + k delta(0) in R-N, (1)
lim(vertical bar x vertical bar ->+infinity) u(x) = 0,
where N > 2, p > 0, k > 0, delta(0) is the Dirac mass at the origin and the potential V is locally Lipchitz continuous in R-N \ {0}, with non-empty support and satisfying
0 <= V(x) <= sigma(1)/vertical bar x vertical bar(a0)(1 +vertical bar x vertical bar (a infinity-a0)),
with a(0) < N, a(0) < a(infinity) and sigma(1) > 0. We obtain two positive solutions of (1) with additional conditions for parameters on a(infinity), a(0), p and k. The first solution is a minimal positive solution and the second solution is constructed via Mountain Pass Theorem.
es_ES
Patrocinador
dc.description.sponsorship
NNSF of China
11401270
11661045
11671179
11371254
Natural Science Foundation of Jiangxi Province
20161ACB20007
Science and Technology Research Project of Jiangxi Provincial Department of Education
GJJ160297
FONDECYT
1110291
Programa BASAL-CMM Universidad de Chile
GAN PO 555 Program of Jiangxi Province