Show simple item record

Authordc.contributor.authorLeottau, David L. 
Authordc.contributor.authorRuíz del Solar San Martín, Javier 
Authordc.contributor.authorBabuška, Robert 
Admission datedc.date.accessioned2018-07-26T15:24:00Z
Available datedc.date.available2018-07-26T15:24:00Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationArtificial Intelligence, 256 (2018): 130–159es_ES
Identifierdc.identifier.other10.1016/j.artint.2017.12.001
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/150316
Abstractdc.description.abstractA multi-agent methodology is proposed for Decentralized Reinforcement Learning (DRL) of individual behaviors in problems where multi-dimensional action spaces are involved. When using this methodology, sub-tasks are learned in parallel by individual agents working toward a common goal. In addition to proposing this methodology, three specific multi agent DRL approaches are considered: DRL-Independent, DRL Cooperative Adaptive (CA), and DRL-Lenient. These approaches are validated and analyzed with an extensive empirical study using four different problems: 3D Mountain Car, SCARA Real-Time Trajectory Generation, Ball-Dribbling in humanoid soccer robotics, and Ball Pushing using differential drive robots. The experimental validation provides evidence that DRL implementations show better performances and faster learning times than their centralized counterparts, while using less computational resources. DRL-Lenient and DRL-CA algorithms achieve the best final performances for the four tested problems, outperforming their DRL-Independent counterparts. Furthermore, the benefits of the DRLLenient and DRL-CA are more noticeable when the problem complexity increases and the centralized scheme becomes intractable given the available computational resources and training time.es_ES
Patrocinadordc.description.sponsorshipCONICYT CONICYT-PCHA/Doctorado Nacional/2013-63130183 FONDECYT 1161500 European Regional Development Fund under the project Robotics 4 Industry 4.0 CZ.02.1.01/0.0/0.0/15_003/0000470es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceArtificial Intelligencees_ES
Keywordsdc.subjectReinforcement learninges_ES
Keywordsdc.subjectMulti agent systemses_ES
Keywordsdc.subjectDecentralized controles_ES
Keywordsdc.subjectAutonomous robotses_ES
Keywordsdc.subjectDistributed artificial intelligencees_ES
Títulodc.titleDecentralized reinforcement learning of robot behaviorses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile