Show simple item record

Authordc.contributor.authorGkikas, Konstantinos T. 
Authordc.contributor.authorVeron, Laurent 
Admission datedc.date.accessioned2018-07-26T16:28:47Z
Available datedc.date.available2018-07-26T16:28:47Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationJournal of Functional Analysis 274 (2018) 1155–1176es_ES
Identifierdc.identifier.other10.1016/j.jfa.2017.07.012
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/150332
Abstractdc.description.abstractWe prove the existence of p-harmonic functions under the form u(r, sigma) = r(-beta)omega(sigma) in any cone C-S generated by a spherical domain S and vanishing on partial derivative C-S. We prove the uniqueness of the exponent beta and of the normalized function omega under a Lipschitz condition on S. (C) 2017 Published by Elsevier Inc.es_ES
Patrocinadordc.description.sponsorshipcollaboration programs EGOS C14E08 FONDECYT 3140567 Millenium Nucleus CAPDE NC130017es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAcademic Press INC Elsevier Sciencees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal of Functional Analysises_ES
Keywordsdc.subjectP-Laplacian operatores_ES
Keywordsdc.subjectPolar setses_ES
Keywordsdc.subjectBoundary Harnack inequalityes_ES
Keywordsdc.subjectP-Martin boundaryes_ES
Títulodc.titleThe spherical p-harmonic eigenvalue problem in non-smooth domainses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorrgfes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile