The spherical p-harmonic eigenvalue problem in non-smooth domains
Author
dc.contributor.author
Gkikas, Konstantinos T.
Author
dc.contributor.author
Veron, Laurent
Admission date
dc.date.accessioned
2018-07-26T16:28:47Z
Available date
dc.date.available
2018-07-26T16:28:47Z
Publication date
dc.date.issued
2018
Cita de ítem
dc.identifier.citation
Journal of Functional Analysis 274 (2018) 1155–1176
es_ES
Identifier
dc.identifier.other
10.1016/j.jfa.2017.07.012
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/150332
Abstract
dc.description.abstract
We prove the existence of p-harmonic functions under the form u(r, sigma) = r(-beta)omega(sigma) in any cone C-S generated by a spherical domain S and vanishing on partial derivative C-S. We prove the uniqueness of the exponent beta and of the normalized function omega under a Lipschitz condition on S. (C) 2017 Published by Elsevier Inc.