Show simple item record

Professor Advisordc.contributor.advisorEstévez Valencia, Pablo
Authordc.contributor.authorTsutsumi Concha, Yoshiro Ricardo 
Associate professordc.contributor.otherPérez Flores, Claudio
Associate professordc.contributor.otherHeld Barrandeguy, Claudio
Admission datedc.date.accessioned2018-07-26T20:51:08Z
Available datedc.date.available2018-07-26T20:51:08Z
Publication datedc.date.issued2017
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/150356
General notedc.descriptionIngeniero Civil Eléctricoes_ES
Abstractdc.description.abstractLa identificación de husos sigma se realiza manualmente por expertos en la medicina del sueño. El proceso consiste en inspeccionar el electroencefalograma (EEG) de los registros polisomnográficos y marcar los intervalos en los que se observan los patrones. Este proceso es bastante tedioso y complicado, especialmente considerando que se buscan patrones de onda que no suelen durar más de algunos segundos en registros de aproximadamente 8 horas. Para aliviar el trabajo de los expertos se han desarrollado sistemas automáticos de detección de husos sigma capaces de identificar estos patrones en el EEG. En esta memoria se propone un nuevo método de detección automático de husos sigma en que se entrenan las formas de onda de un diccionario, usando un algoritmo de aprendizaje supervisado, para que éstas sean representativas de los husos sigma. Posteriormente, se utiliza un modelo de descomposición de señal para descomponer la señal de un canal del EEG en un número finito de componentes representados por la convolución entre las formas de onda del diccionario aprendido y un conjunto de trenes de pulsos que indican los intervalos de la señal donde se identifican patrones de onda semejantes a las formas de onda del diccionario aprendido. Los intervalos de la señal que son descompuestos por el modelo de descomposición, son consideradas como las detecciones del método, debido a que estos intervalos presentan una alta correlacción con las formas de onda representativas de los husos sigma que componen el diccionario aprendido. En el desarrollo de este método se utilizó un único registro polisom- nográfico de un niño de 10 años, con el cual se formaron los conjuntos de entrenamiento y de prueba usando fragmentos del registro en la etapa de sueño N2. El método obtuvo resultados preliminares satisfactorios que verifican su capacidad para detector husos sigma en la etapa de sueño N2 de un registro polisomnográfico, con una tasa de verdaderos positivos promedio de 85,080 % y una tasa de falsos positivos promedio de 14,995 %. El método de detección de husos sigma propuesto ofrece una metodología novedosa que no utiliza los usuales métodos espectrales para analizar el EEG. Además con este proceso se obtiene un diccionario con formas de onda representativas de los husos sigma que se puede utilizar para estudiar y caracterizar los husos sigma detectados por el método.es_ES
Lenguagedc.language.isoeses_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectMedicina del sueño (Especialidad)es_ES
Keywordsdc.subjectElectroencefalografíaes_ES
Keywordsdc.subjectHusos sigmaes_ES
Keywordsdc.subjectMatching pursuites_ES
Keywordsdc.subjectK-SVDes_ES
Títulodc.titleDetección de husos sigma en señales de EEG usando algoritmos Matching Pursuit y K-SVDes_ES
Document typedc.typeTesis
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Eléctricaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile