Cold spray aluminum–alumina cermet coatings: effect of alumina content
Author
dc.contributor.author
Fernández Urrutia, Rubén Marcos
Author
dc.contributor.author
Jodoin, Bertrand
Admission date
dc.date.accessioned
2018-09-06T13:51:05Z
Available date
dc.date.available
2018-09-06T13:51:05Z
Publication date
dc.date.issued
2018
Cita de ítem
dc.identifier.citation
J Therm Spray Tech (2018) 27:603–623
es_ES
Identifier
dc.identifier.other
10.1007/s11666-018-0702-6
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/151506
Abstract
dc.description.abstract
Deposition behavior and deposition efficiency were investigated for several aluminum-alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.