Show simple item record

Authordc.contributor.authorHoermann, Julia M.
Authordc.contributor.authorBertoglio, Cristóbal
Authordc.contributor.authorKronbichler, Martin
Authordc.contributor.authorPfaller, Martin
Authordc.contributor.authorChabiniok, Radomir
Authordc.contributor.authorWall, Wolfgang A.
Admission datedc.date.accessioned2018-09-14T18:13:14Z
Available datedc.date.available2018-09-14T18:13:14Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationInt J Numer Meth Biomed Engng. 2018;34:e2959es_ES
Identifierdc.identifier.other10.1002/cnm.2959
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/151694
Abstractdc.description.abstractCardiac electrophysiology simulations are numerically challenging because of the propagation of a steep electrochemical wave front and thus require discretizations with small mesh sizes to obtain accurate results. In this work, we present an approach based on the hybridizable discontinuous Galerkin method (HDG), which allows an efficient implementation of high-order discretizations into a computational framework. In particular, using the advantage of the discontinuous function space, we present an efficient p-adaptive strategy for accurately tracking the wave front. The HDG allows to reduce the overall degrees of freedom in the final linear system to those only on the element interfaces. Additionally, we propose a rule for a suitable integration accuracy for the ionic current term depending on the polynomial order and the cell model to handle high-order polynomials. Our results show that for the same number of degrees of freedom, coarse high-order elements provide more accurate results than fine low-order elements. Introducing p-adaptivity further reduces computational costs while maintaining accuracy by restricting the use of high-order elements to resolve the wave front. For a patient-specific simulation of a cardiac cycle, p-adaptivity reduces the average number of degrees of freedom by 95% compared to the nonadaptive model. In addition to reducing computational costs, using coarse meshes with our p-adaptive high-order HDG method also simplifies practical aspects of mesh generation and postprocessing.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherWileyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceInternational Journal for Numerical Methods in Biomedical Engineeringes_ES
Keywordsdc.subjectCardiac electrophysiologyes_ES
Keywordsdc.subjectFinite element methodes_ES
Keywordsdc.subjectHybridizable discontinuous Galerkines_ES
Títulodc.titleAn adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiologyes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso abierto
Catalogueruchile.catalogadorrgfes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile