Show simple item record

Authordc.contributor.authorPinilla, P. 
Authordc.contributor.authorTazzari, M. 
Authordc.contributor.authorPascucci, I. 
Authordc.contributor.authorYoudin, A. N. 
Authordc.contributor.authorGarufi, A. 
Authordc.contributor.authorManara, C. F. 
Authordc.contributor.authorTesti, L. 
Authordc.contributor.authorVan der Plas, Gerrit 
Authordc.contributor.authorBarenfeld, S. A. 
Authordc.contributor.authorCanovas, H. 
Authordc.contributor.authorCox, E. G. 
Authordc.contributor.authorHendler, N. P. 
Authordc.contributor.authorPérez, L. M. 
Authordc.contributor.authorvan der Marel, N. 
Cita de ítemdc.identifier.citationThe Astrophysical Journal, 859:32 (15pp), 2018 May 20es_ES
Abstractdc.description.abstractWe analyze the dust morphology of 29 transition disks (TDs) observed with Atacama Large (sub-)Millimeter Array (ALMA) at (sub-)millimeter emission. We perform the analysis in the visibility plane to characterize the total flux, cavity size, and shape of the ring-like structure. First, we found that the M-dust-M-star relation is much flatter for TDs than the observed trends from samples of class II sources in different star-forming regions. This relation demonstrates that cavities open in high (dust) mass disks, independent of the stellar mass. The flatness of this relation contradicts the idea that TDs are a more evolved set of disks. Two potential reasons (not mutually exclusive) may explain this flat relation: the emission is optically thick or/and millimeter-sized particles are trapped in a pressure bump. Second, we discuss our results of the cavity size and ring width in the context of different physical processes for cavity formation. Photoevaporation is an unlikely leading mechanism for the origin of the cavity of any of the targets in the sample. Embedded giant planets or dead zones remain as potential explanations. Although both models predict correlations between the cavity size and the ring shape for different stellar and disk properties, we demonstrate that with the current resolution of the observations, it is difficult to obtain these correlations. Future observations with higher angular resolution observations of TDs with ALMA will help discern between different potential origins of cavities in TDs.es_ES
Patrocinadordc.description.sponsorshipNASA through Hubble Fellowship grant - Space Telescope Science Institute HST-HF2-51380.001-A NASA NAS 5-26555 DISCSIM project - European Research Council under ERC-ADG 341137 Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) FOR 2634/1 NSF Astronomy & Astrophysics Research Grant 1515392 ESO Fellowship ANR of France ANR-16-CE31-0013 National Science Foundation Graduate Research Fellowship DGE1144469 NSF AST-1140063es_ES
Publisherdc.publisherIop Publishing LTD.es_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.uri*
Sourcedc.sourceThe Astrophysical Journales_ES
Keywordsdc.subjectAccretion diskses_ES
Keywordsdc.subjectCircumstellar matteres_ES
Keywordsdc.subjectPlanets and satellites: formationes_ES
Keywordsdc.subjectProtoplanetary diskses_ES
Títulodc.titleHomogeneous analysis of the dust morphology of transition disks observed with ALMA: investigating dust trapping and the origin of the cavitieses_ES
Document typedc.typeArtículo de revistaes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile