Show simple item record

Authordc.contributor.authorGallardo, R. A. 
Authordc.contributor.authorSchneider, T. 
Authordc.contributor.authorRoldán-Molina, A. 
Authordc.contributor.authorLanger, M. 
Authordc.contributor.authorNúñez Vásquez, Álvaro 
Authordc.contributor.authorLenz, K. 
Authordc.contributor.authorLindner, J. 
Authordc.contributor.authorLanderos, P. 
Admission datedc.date.accessioned2018-10-01T13:07:27Z
Available datedc.date.available2018-10-01T13:07:27Z
Publication datedc.date.issued2018-05
Cita de ítemdc.identifier.citationPhysical Review B 97, 174404 (2018)es_ES
Identifierdc.identifier.other10.1103/PhysRevB.97.174404
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/151862
Abstractdc.description.abstractSymmetry and localization properties of defect modes of a one-dimensional bicomponent magnonic superlattice are theoretically studied. The magnonic superlattice can be seen as a periodic array of nanostripes, where stripes with different widths, termed defect stripes, are periodically introduced. By controlling the geometry of the defect stripes, a transition from dispersive to practically flat spin-wave defect modes can be observed inside the magnonic band gaps. It is shown that the spin-wave profile of the defect modes can be either symmetric or antisymmetric, depending on the geometry of the defect. Due to the localized character of the defect modes, a particular magnonic superlattice is proposed wherein the excitation of both symmetric and antisymmetric flat magnonic modes is enabled at the same time. Also, it is demonstrated that the relative frequency position of the antisymmetric mode inside the band gap does not significantly change with the application of an external field, while the symmetric modes move to the edges of the frequency band gaps. The results are complemented by numerical simulations, where excellent agreement is observed between the methods. The proposed theory allows exploring different ways to control the dynamic properties of the defect modes in metamaterial magnonic superlattices, which can be useful for applications on multifunctional microwave devices operating over a broad frequency range.es_ES
Patrocinadordc.description.sponsorshipFONDECYT 11170736 1161403 1150072 CONICYT PAI/ACADEMIA 79140033 Basal Program for Centers of Excellence, CONICYT FB0807 CEDENNA Deutsche Forschungsgemeinschaft GE1202/9-2 LE2443/5-1 In-ProTUC scholarship European Union 701647 DAAD ALECHILE57136331 CONICYTPCCI140051es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Physical Societyes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourcePhysical Review Bes_ES
Keywordsdc.subject3D photonic crystalses_ES
Keywordsdc.subjectBand-structurees_ES
Keywordsdc.subjectWave-guidees_ES
Keywordsdc.subjectLightes_ES
Títulodc.titleSymmetry and localization properties of defect modes in magnonic superlatticeses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorrgfes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile