Show simple item record

Authordc.contributor.authorCabrera, Diego 
Authordc.contributor.authorSancho, Fernando 
Authordc.contributor.authorCerrada, Mariela 
Authordc.contributor.authorSánchez, René-Vinicio 
Authordc.contributor.authorTobar, Felipe 
Admission datedc.date.accessioned2018-11-07T20:43:05Z
Available datedc.date.available2018-11-07T20:43:05Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationJournal of Intelligent & Fuzzy Systems Volumen: 34 Número: 6 Páginas: 3799-3809 Volumen: 34 Número: 6 Páginas: 3799-3809es_ES
Identifierdc.identifier.other10.3233/JIFS-169552
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/152469
Abstractdc.description.abstractUsually, time series acquired from some measurement in a dynamical system are the main source of information about its internal structure and complex behavior. In this situation, trying to predict a future state or to classify internal features in the system becomes a challenging task that requires adequate conceptual and computational tools as well as appropriate datasets. A specially difficult case can be found in the problems framed under one-class learning. In an attempt to sidestep this issue, we present a machine learning methodology based in Reservoir Computing and Variational Inference. In our setting, the dynamical system generating the time series is modeled by an Echo State Network (ESN), and the parameters of the ESN are defined by an expressive probability distribution which is represented as a Variational Autoencoder. As a proof of its applicability, we show some results obtained in the context of condition-based maintenance in rotating machinery, where vibration signals can be measured from the system, our goal is fault detection in helical gearboxes under realistic operating conditions. The results show that our model is able, after trained only with healthy conditions, to discriminate successfully between healthy and faulty conditions and overcome other classical methodologies.es_ES
Patrocinadordc.description.sponsorshipMinisterio de Economia y Competitividad of Gobierno de Espana TIN2012-37434 TIN2013-41086-P European FEDER funds CONICYT PAI-82140061 Basal-CMM GIDTEC project 003-002-2016-03-03es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOS Presses_ES
Sourcedc.sourceJournal of Intelligent & Fuzzy Systemses_ES
Keywordsdc.subjectDynamical system modelinges_ES
Keywordsdc.subjectDeep learninges_ES
Keywordsdc.subjectReservoir computinges_ES
Keywordsdc.subjectVariational inferencees_ES
Títulodc.titleEcho state network and variational autoencoder for efficient one-class learning on dynamical systemses_ES
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso a solo metadatoses_ES
Catalogueruchile.catalogadorrgfes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record