Show simple item record

Authordc.contributor.authorMartínez Palomera, Jorge 
Authordc.contributor.authorForster, Francisco 
Authordc.contributor.authorProtopapas, Pavlos 
Authordc.contributor.authorMaureira, Juan Carlos 
Authordc.contributor.authorLira Teillery, Paulina 
Authordc.contributor.authorCabrera Vives, Guillermo 
Authordc.contributor.authorHuijse Heise, Pablo Andrés 
Authordc.contributor.authorGalbany, Lluis 
Authordc.contributor.authorDe Jaeger, Thomas 
Authordc.contributor.authorGonzález Gaitán, Santiago 
Authordc.contributor.authorMedina, Gustavo 
Authordc.contributor.authorPignata Libralato, Giuliano 
Authordc.contributor.authorSan Martín Aristegui, Jaime 
Authordc.contributor.authorHamuy Wackenhut, Mario 
Authordc.contributor.authorMuñoz Vidal, Ricardo Rodrigo 
Admission datedc.date.accessioned2018-11-15T19:28:14Z
Available datedc.date.available2018-11-15T19:28:14Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationAstrophysical Journal arXiv:1809.00763 [astro-ph.IM]es_ES
Identifierdc.identifier.other10.3847/1538-3881/aadfd8
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/152644
Abstractdc.description.abstractThe High Cadence Transient Survey (HiTS) aims to discover and study transient objects with characteristic timescales between hours and days, such as pulsating, eclipsing and exploding stars. This survey represents a unique laboratory to explore large etendue observations from cadences of about 0.1 days and to test new computational tools for the analysis of large data. This work follows a fully Data Science approach: from the raw data to the analysis and classification of variable sources. We compile a catalog of ∼15 million object detections and a catalog of ∼2.5 million light–curves classified by variability. The typical depth of the survey is 24.2, 24.3, 24.1 and 23.8 in u, g, r and i bands, respectively. We classified all point–like non–moving sources by first extracting features from their light–curves and then applying a Random Forest classifier. For the classification, we used a training set constructed using a combination of cross-matched catalogs, visual inspection, transfer/active learning and data augmentation. The classification model consists of several Random Forest classifiers organized in a hierarchical scheme. The classifier accuracy estimated on a test set is approximately 97%. In the unlabeled data, 3 485 sources were classified as variables, of which 1 321 were classified as periodic. Among the periodic classes we discovered with high confidence, 1 δ–scutti, 39 eclipsing binaries, 48 rotational variables and 90 RR–Lyrae and for the non–periodic classes we discovered 1 cataclysmic variables, 630 QSO, and 1 supernova candidates. The first data release can be accessed in the project archive of HiTSa)es_ES
Lenguagedc.language.isoenes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectSurveyses_ES
Keywordsdc.subjectCatalogses_ES
Keywordsdc.subjectMethods: data analysises_ES
Keywordsdc.subjectTechniques: photometrices_ES
Keywordsdc.subjectStars: variablees_ES
Títulodc.titleThe high cadence transient survey (HITS). Compilation and characterization of light–curve catalogses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlajes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile