Partitioning 2-coloured complete k-uniform hypergraphs into monochromatic ℓ-cycles
Author
dc.contributor.author
Bustamante, Sebastián
Author
dc.contributor.author
Stein, Maya
Admission date
dc.date.accessioned
2018-11-26T20:27:59Z
Available date
dc.date.available
2018-11-26T20:27:59Z
Publication date
dc.date.issued
2018-06
Cita de ítem
dc.identifier.citation
European Journal of Combinatorics Volumen: 71 Páginas: 213-221
es_ES
Identifier
dc.identifier.other
10.1016/j.ejc.2018.04.005
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/152926
Abstract
dc.description.abstract
We show that for all l, k, n with l <= k/2 and (k-l) dividing n the following hypergraph-variant of Lehel's conjecture is true. Every 2-edge-colouring of the k-uniform complete hypergraph kappa((k))(n) on n vertices has at most two disjoint monochromatic l-cycles in different colours that together cover all but at most 4(k-l)vertices. If l <= k/3, then at most two l-cycles cover all but at most 2(k-l) vertices. Furthermore, we can cover all vertices with at most 4 (3 if l <= k/3) disjoint monochromatic & cycles.(C) 2018 Published by Elsevier Ltd.
es_ES
Patrocinador
dc.description.sponsorship
Millennium Nucleus Information and Coordination in Networks
ICM/FIC RC130003
CONICYT Doctoral Fellowship
21141116
Fondecyt Regular grant
1180830
CMM-Basal AFB
170001