Show simple item record

Authordc.contributor.authorDaniilidis, Aris 
Authordc.contributor.authorHaddou, Mounir 
Authordc.contributor.authorLe Gruyer, Erwan 
Authordc.contributor.authorLey, Olivier 
Admission datedc.date.accessioned2019-01-13T02:37:06Z
Available datedc.date.available2019-01-13T02:37:06Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationProceedings of the American Mathematical Society Volumen: 146 Número: 10 Páginas: 4487-4495 Oct 2018es_ES
Identifierdc.identifier.other10.1090/proc/14012
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/159360
Abstractdc.description.abstractWe give a simple alternative proof for the C-1,C-1-convex extension problem which has been introduced and studied by D. Azagra and C. Mudarra (2017). As an application, we obtain an easy constructive proof for the Glaeser-Whitney problem of C-1,C-1 extensions on a Hilbert space. In both cases we provide explicit formulae for the extensions. For the Glaeser-Whitney problem the obtained extension is almost minimal, that is, minimal up to a multiplicative factor in the sense of Le Gruyer (2009).es_ES
Patrocinadordc.description.sponsorshipCentre Henri Lebesgue ANR-11-LABX-0020-01es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmer Mathematical Soces_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceProceedings of the American Mathematical Societyes_ES
Keywordsdc.subjectWhitney extension problemes_ES
Keywordsdc.subjectConvex extensiones_ES
Keywordsdc.subjectSup-inf convolutiones_ES
Keywordsdc.subjectSemiconvex functiones_ES
Títulodc.titleExplicit formulas for C1;1 Glaeser-Whitney extensions of 1-Taylor elds in Hilbert spaceses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile