Explicit formulas for C1;1 Glaeser-Whitney extensions of 1-Taylor elds in Hilbert spaces
Author
dc.contributor.author
Daniilidis, Aris
Author
dc.contributor.author
Haddou, Mounir
Author
dc.contributor.author
Le Gruyer, Erwan
Author
dc.contributor.author
Ley, Olivier
Admission date
dc.date.accessioned
2019-01-13T02:37:06Z
Available date
dc.date.available
2019-01-13T02:37:06Z
Publication date
dc.date.issued
2018
Cita de ítem
dc.identifier.citation
Proceedings of the American Mathematical Society Volumen: 146 Número: 10 Páginas: 4487-4495 Oct 2018
es_ES
Identifier
dc.identifier.other
10.1090/proc/14012
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/159360
Abstract
dc.description.abstract
We give a simple alternative proof for the C-1,C-1-convex extension problem which has been introduced and studied by D. Azagra and C. Mudarra (2017). As an application, we obtain an easy constructive proof for the Glaeser-Whitney problem of C-1,C-1 extensions on a Hilbert space. In both cases we provide explicit formulae for the extensions. For the Glaeser-Whitney problem the obtained extension is almost minimal, that is, minimal up to a multiplicative factor in the sense of Le Gruyer (2009).