Show simple item record

Professor Advisordc.contributor.advisorVelásquez Silva, Juan
Authordc.contributor.authorNumhauser Cabrera, Abel Iván 
Associate professordc.contributor.otherJiménez Molina, Ángel
Associate professordc.contributor.otherCórdoba Galleguillos, Andrés
Admission datedc.date.accessioned2019-04-29T20:24:14Z
Available datedc.date.available2019-04-29T20:24:14Z
Publication datedc.date.issued2018
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168337
General notedc.descriptionMagíster en ingeniería de Negocios con Tecnologías de Información. Ingeniero Civil Industriales_ES
Abstractdc.description.abstractLa presente tesis se centró en la implementación de Interés Complementario, un servicio tecnológico para OpinionZoom (OZ), proyecto académico con fines comerciales llevado a cabo por el Web Intelligence Centre (WIC) de la Universidad de Chile. Se creó un módulo que detecta automáticamente los temas que un usuario chileno de Twitter expone en los comentarios que emite, con la finalidad comercial es generar insights de los prospectos de clientes de OpinionZoom. La problemática recae en que el volumen da datos es muy numeroso y además aumenta considerablemente conforme pasa el tiempo. Adicionalmente, se trata de un estudio pionero: la tesis debió hacerse cargo de generar una metodología para descubrir aproximadamente cuántos tópicos y de qué naturaleza existen ente los usuarios de Twitter en Chile, así como la paquetización en un servicio. De acuerdo a lo anterior, se declaró la hipótesis de investigación: Es factible montar una herramienta comercial que identifique los tópicos de mayor interés de usuarios de redes sociales, basándose en el contenido que éstos generan y mediante el uso de herramientas de minería de opiniones, con foco en topic modeling. Se optó por utilizar LDA, un modelo supervisado para realizar Topic Modeling pero en un proceso iterativo para estimar la cantidad más adecuadas de tópicos. Gracias a ello, y sumado a una limitante en la capacidad de procesamiento, se generaron 120 tópicos, donde se evidencia que 28 de ellos no guardan ninguna relevancia semántica y que fueron generados por sesgo de la base de entrenamiento. Los restantes decantaron en una taxonomía de 27 categorías con 44 subcategorías, donde las principales categorías son Social y noticias. La precisión de la herramienta globalmente no fue satisfactorio, pues en promedio es de 40%. Sin embargo, tras estudiar los casos se evidenció que los usuarios que tienen una mayor cantidad de tweets presentan una mejora significativa en la precisión, llegando hasta una precisión del orden de 60%. Para determinar factibilidad se realizó una cubicación y análisis de sensibilidad de los recursos necesarios para la comercialización, bajo tres estrategias: (1) Spin-in, en el que se vende como un organismo interno de la Universidad de Chile; (2) Partner Estratégico, en el que se confía la exclusividad de los servicios de investigación y mantención a un privado, a cambio del cobro de una licencia; y (3) Spin-off, en el que se desprende la fuerza de venta de la Universidad y paga un tributo extra por los ingresos. En conclusiones principales de destaca en la dimensión de negocio que el proyecto es rentable y la alternativa de comercialización de Spin-off es factible en tanto se obtenga una cantidad determinada de clientes al año. En cuanto a visión de procesos, fue posible utilizar metodologías del plan de estudios para el diseño global y particular del módulo de Interés Complementario. Sobre la investigación en sí, se determinó que la hipótesis se cumple siempre y cuando el usuario a analizar genere suficiente contenido, tal que los tópicos estimados sumen cierto nivel del denominado Ratio de Interés.es_ES
Patrocinadordc.description.sponsorshipEste trabajo ha sido financiado por el proyecto CORFO 13IDL2-23170es_ES
Lenguagedc.language.isoeses_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectMinería de datoses_ES
Keywordsdc.subjectRedes socialeses_ES
Keywordsdc.subjectTwitteres_ES
Keywordsdc.subjectMinería de opinioneses_ES
Keywordsdc.subjectAspect based opiniones_ES
Títulodc.titleInterés complementario: Diseño e implementación de una metodología de estudio de mercado orientado a redes sociales, con el uso de herramientas de minería de opinioneses_ES
Document typedc.typeTesis
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Industriales_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile