Mostrar el registro sencillo del ítem

Profesor guíadc.contributor.advisorLópez Droguett, Enrique
Autordc.contributor.authorOyharcabal Astorga, Nicolás 
Profesor colaboradordc.contributor.otherMeruane Naranjo, Viviana
Profesor colaboradordc.contributor.otherLoncomilla Zambrana, Patricio
Fecha ingresodc.date.accessioned2019-05-09T21:00:57Z
Fecha disponibledc.date.available2019-05-09T21:00:57Z
Fecha de publicacióndc.date.issued2018
Identificadordc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168514
Nota generaldc.descriptionMemoria para optar al título de Ingeniero Civil Mecánicoes_ES
Resumendc.description.abstractLa determinación de la vida útil remanente (RUL del inglés "Remaining Useful Life") de una máquina, equipo, dispositivo o elemento mecánico, es algo en lo que se ha estado trabajando en los últimos años y que es crucial para el futuro de cualquier industria que así lo requiera. El continuo monitoreo de máquinas junto a una buena predicción de la RUL permite la minimización de costos de mantención y menor exposición a fallas. Sin embargo, los datos obtenidos del monitoreo son variados, tienen ruido, poseen un carácter secuencial y no siempre guardan estricta relación con la RUL, por lo que su estimación es un problema difícil. Es por ello que en la actualidad se utilizan distintas clases de Redes Neuronales y en particular, cuando se quiere modelar problemas de carácter secuencial, se utilizan las Redes Neuronales Recurrentes o RNN (del inglés "Recurrent Neural Network") como LSTM (del inglés "Long Short Term Memory") o JANET (del inglés "Just Another NETwork"), por su capacidad para identificar de forma autónoma patrones en secuencias temporales, pero también junto a estas últimas redes, también se utilizan alternativas que incorporan la Convolución como operación para cada célula de las RNN y que se conocen como ConvRNN (del inglés "Convolutional Recurrent Neural Network"). Estas últimas redes son mejores que sus pares convolucional y recurrentes en ciertos casos que requieren procesar secuencias de imágenes, y en el caso particular de este trabajo, series de tiempo de datos de monitoreo que son suavizados por la Convolución y procesados por la Recurrencia. El objetivo general de este trabajo es determinar la mejor opción de ConvRNN para la determinación de la RUL de un turbofan a partir de series de tiempo de la base de datos C-MAPSS. También se estudia cómo editar la base de datos para mejorar la precisión de una ConvRNN y la aplicación de la Convolución como una operación primaria en una serie de tiempo cuyos parámetros muestran el comportamiento de un turbofan. Para ello se programa una LSTM Convolucional, LSTM Convolucional Codificador-Decodificador, JANET Convolucional y JANET Convolucional Codificador-Decodificador. A partir de esto se encuentra que el modelo JANET Convolucional Codificador-Decodificador da los mejores resultados en cuanto a exactitud promedio y cantidad de parámetros necesarios (entre menos mejor pues se necesita menos memoria) para la red, siendo además capaz de asimilar la totalidad de las bases de datos C-MAPSS. Por otro lado, también se encuentra que la RUL de la base de datos puede ser modificada para datos antes de la falla. Para la programación y puesta en marcha de las diferentes redes, se utilizan los computadores del laboratorio de Integración de Confiabilidad y Mantenimiento Inteligente (ICMI) del Departamento de Ingeniería Mecánica de la Universidad de Chile.es_ES
Idiomadc.language.isoenes_ES
Publicadordc.publisherUniversidad de Chilees_ES
Tipo de licenciadc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link a Licenciadc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Palabras clavesdc.subjectMaquinariaes_ES
Palabras clavesdc.subjectPredicción en tecnologíaes_ES
Palabras clavesdc.subjectRedes neuronales (Ciencia de la computación)es_ES
Palabras clavesdc.subjectVida útiles_ES
Títulodc.titleConvolutional recurrent neural networks for remaining useful life prediction in mechanical systemses_ES
Tipo de documentodc.typeTesis
Catalogadoruchile.catalogadorgmmes_ES
Departamentouchile.departamentoDepartamento de Ingeniería Mecánicaes_ES
Facultaduchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES


Descargar archivo

Icon
Icon

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 Chile
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 Chile