Show simple item record

Authordc.contributor.authorCabrera Vives, Guillermo 
Authordc.contributor.authorReyes, Ignacio 
Authordc.contributor.authorFörster, Francisco 
Authordc.contributor.authorEstévez Valencia, Pablo 
Authordc.contributor.authorMaureira, Juan Carlos 
Admission datedc.date.accessioned2019-05-29T13:10:08Z
Available datedc.date.available2019-05-29T13:10:08Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationAstrophysical Journal, Volumen 836, Issue 1, 2017
Identifierdc.identifier.issn15384357
Identifierdc.identifier.issn0004637X
Identifierdc.identifier.other10.3847/1538-4357/836/1/97
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168773
Abstractdc.description.abstractWe introduce Deep-HiTS, a rotation invariant convolutional neuralnetwork (CNN) model for clas-sifying images of transients candidates into artifacts or real sources for the High cadence TransientSurvey (HiTS). CNNs have the advantage of learning the featuresautomatically from the data whileachieving high performance. We compare our CNN model against a feature engineering approachusing random forests (RF). We show that our CNN significantly outperforms the RF model reducingthe error by almost half. Furthermore, for a fixed number of approximately 2,000 allowed false tran-sient candidates per night we are able to reduce the miss-classified real transients by approximately1/5. To the best of our knowledge, this is the first time CNNs have been used to detect astronomi-cal transient events. Our approach will be very useful when processing images from next generationinstruments such as the Large Synoptic Survey Telescope (LSST). We have made all our code anddata available to the community for the sake of allowing further developments and comparisons athttps://github.com/guille-c/Deep-HiTS
Lenguagedc.language.isoen
Publisherdc.publisherInstitute of Physics
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceAstrophysical Journal
Keywordsdc.subjectMethods: data analysis
Keywordsdc.subjectMethods: statistical
Keywordsdc.subjectSupernovae: general
Keywordsdc.subjectSurveys
Keywordsdc.subjectTechniques: image processing
Títulodc.titleDeep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile