Show simple item record

Authordc.contributor.authorAgudelo, Oscar 
Authordc.contributor.authorPino Manresa, Manuel del 
Authordc.contributor.authorWei, Juncheng 
Admission datedc.date.accessioned2019-05-29T13:10:19Z
Available datedc.date.available2019-05-29T13:10:19Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationChinese Annals of Mathematics. Series B, Volumen 38, Issue 1, 2017, Pages 13-44
Identifierdc.identifier.issn18606261
Identifierdc.identifier.issn02529599
Identifierdc.identifier.other10.1007/s11401-016-1062-5
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168792
Abstractdc.description.abstractThis paper presents a new family of solutions to the singularly perturbed Allen-Cahn equation α2Δu + u(1 − u2) = 0 in a smooth bounded domain Ω ⊂ R3, with Neumann boundary condition and α > 0 a small parameter. These solutions have the property that as α → 0, their level sets collapse onto a bounded portion of a complete embedded minimal surface with finite total curvature intersecting ∂Ω orthogonally and that is non-degenerate respect to ∂Ω. The authors provide explicit examples of surfaces to which the result applies.
Lenguagedc.language.isoen
Publisherdc.publisherSpringer
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceChinese Annals of Mathematics. Series B
Keywordsdc.subjectAllen-Cahn equation
Keywordsdc.subjectCritical catenoid
Keywordsdc.subjectCritical minimal surfaces
Keywordsdc.subjectInfinite dimensional gluing method
Keywordsdc.subjectNeumann boundary condition
Títulodc.titleCatenoidal layers for the Allen-Cahn equation in bounded domains
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile