Catenoidal layers for the Allen-Cahn equation in bounded domains
Author
dc.contributor.author
Agudelo, Oscar
Author
dc.contributor.author
Pino Manresa, Manuel del
Author
dc.contributor.author
Wei, Juncheng
Admission date
dc.date.accessioned
2019-05-29T13:10:19Z
Available date
dc.date.available
2019-05-29T13:10:19Z
Publication date
dc.date.issued
2017
Cita de ítem
dc.identifier.citation
Chinese Annals of Mathematics. Series B, Volumen 38, Issue 1, 2017, Pages 13-44
Identifier
dc.identifier.issn
18606261
Identifier
dc.identifier.issn
02529599
Identifier
dc.identifier.other
10.1007/s11401-016-1062-5
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/168792
Abstract
dc.description.abstract
This paper presents a new family of solutions to the singularly perturbed Allen-Cahn equation α2Δu + u(1 − u2) = 0 in a smooth bounded domain Ω ⊂ R3, with Neumann boundary condition and α > 0 a small parameter. These solutions have the property that as α → 0, their level sets collapse onto a bounded portion of a complete embedded minimal surface with finite total curvature intersecting ∂Ω orthogonally and that is non-degenerate respect to ∂Ω. The authors provide explicit examples of surfaces to which the result applies.