Show simple item record

Authordc.contributor.authorAcuña, David E. 
Authordc.contributor.authorOrchard Concha, Marcos 
Admission datedc.date.accessioned2019-05-29T13:10:21Z
Available datedc.date.available2019-05-29T13:10:21Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationMechanical Systems and Signal Processing 85 (2017) 827–848
Identifierdc.identifier.issn10961216
Identifierdc.identifier.issn08883270
Identifierdc.identifier.other10.1016/j.ymssp.2016.08.029
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168798
Abstractdc.description.abstractThis paper presents a novel prognostic method that allows a proper characterization of the uncertainty associated with the evolution in time of nonlinear dynamical systems. The method assumes a state-space representation of the system, as well as the availability of particle-filtering-based estimates of the state posterior density at the moment in which the prognostic algorithm is executed. Our proposal significantly improves all particle-filtering- based prognosis frameworks currently available in two main aspects. First, it provides a correction for the expression that is used for the computation of the Time-of- Failure (ToF) probability mass function in the context of online monitoring schemes. Secondly, it presents a method for improved characterization of the tails of the ToF probability mass function via sequential propagation of sigma-points and the computation of Gaussian Mixture Models (GMMs). The proposed algorithm is tested and validated using experimental data related to the problem of Lithium-Ion battery State-of-Charge prognosis.
Lenguagedc.language.isoen
Publisherdc.publisherElsevier
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceMechanical Systems and Signal Processing
Keywordsdc.subjectBattery State-of-Charge
Keywordsdc.subjectParticle filters
Keywordsdc.subjectPrognostics and health management
Keywordsdc.subjectUncertainty characterization
Títulodc.titleParticle-filtering-based failure prognosis via sigma-points: Application to Lithium-Ion battery State-of-Charge monitoring
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile