Local colourings and monochromatic partitions in complete bipartite graphs
Author
dc.contributor.author
Lang, Richard
Author
dc.contributor.author
Stein, Maya
Admission date
dc.date.accessioned
2019-05-29T13:10:23Z
Available date
dc.date.available
2019-05-29T13:10:23Z
Publication date
dc.date.issued
2017
Cita de ítem
dc.identifier.citation
European Journal of Combinatorics 60 (2017) 42–54
Identifier
dc.identifier.issn
01956698
Identifier
dc.identifier.other
10.1016/j.ejc.2016.09.003
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/168804
Abstract
dc.description.abstract
We show that for any 2-local colouring of the edges of the balanced complete bipartite graph Kn,n, its vertices can be covered with at most 3 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced complete bipartite r-locally coloured graph with O(r2) disjoint monochromatic cycles. We also determine the 2-local bipartite Ramsey number of a path almost exactly: Every 2-local colouring of the edges of Kn,n contains a monochromatic path on n vertices.