Show simple item record

Authordc.contributor.authorLang, Richard 
Authordc.contributor.authorStein, Maya 
Admission datedc.date.accessioned2019-05-29T13:10:23Z
Available datedc.date.available2019-05-29T13:10:23Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationEuropean Journal of Combinatorics 60 (2017) 42–54
Identifierdc.identifier.issn01956698
Identifierdc.identifier.other10.1016/j.ejc.2016.09.003
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168804
Abstractdc.description.abstractWe show that for any 2-local colouring of the edges of the balanced complete bipartite graph Kn,n, its vertices can be covered with at most 3 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced complete bipartite r-locally coloured graph with O(r2) disjoint monochromatic cycles. We also determine the 2-local bipartite Ramsey number of a path almost exactly: Every 2-local colouring of the edges of Kn,n contains a monochromatic path on n vertices.
Lenguagedc.language.isoen
Publisherdc.publisherAcademic Press- Elsevier
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceEuropean Journal of Combinatorics
Keywordsdc.subjectDiscrete Mathematics and Combinatorics
Títulodc.titleLocal colourings and monochromatic partitions in complete bipartite graphs
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile