Show simple item record

Authordc.contributor.authorBarrios, Pablo 
Authordc.contributor.authorAdams, Martin 
Authordc.contributor.authorLeung, Keith 
Authordc.contributor.authorInostroza, Felipe 
Authordc.contributor.authorNaqvi, Ghayur 
Authordc.contributor.authorOrchard Concha, Marcos 
Admission datedc.date.accessioned2019-05-29T13:10:24Z
Available datedc.date.available2019-05-29T13:10:24Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationIEEE Transactions on Robotics, Volumen 33, Issue 1, 2017, Pages 198-213
Identifierdc.identifier.issn15523098
Identifierdc.identifier.other10.1109/TRO.2016.2627027
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168807
Abstractdc.description.abstractInrobotic mapping and simultaneous localization and mapping, the ability to assess the quality of estimated maps is crucial. While concepts exist for quantifying the error in the estimated trajectory of a robot, or a subset of the estimated feature locations, the difference between all current estimated and ground-truth features is rarely considered jointly. In contrast to many current methods, this paper analyzes metrics, which automatically evaluate maps based on their joint detection and description uncertainty. In the tracking literature, the optimal subpattern assignment (OSPA) metric provided a solution to the problem of assessing target tracking algorithms and has recently been applied to the assessment of robotic maps. Despite its advantages over other metrics, the OSPA metric can saturate to a limiting value irrespective of the cardinality errors and it penalizes missed detections and false alarms in an unequal manner. This paper therefore introduces the cardinalized optimal linear assignment (COLA) metric, as a complement to the OSPA metric, for feature map evaluation. Their combination is shown to provide a robust solution for the evaluation of map estimation errors in an intuitive manner.
Lenguagedc.language.isoen
Publisherdc.publisherIEEE
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceIEEE Transactions on Robotics
Keywordsdc.subjectMap metric
Keywordsdc.subjectMobile robots
Keywordsdc.subjectSimultaneous localization and mapping
Títulodc.titleMetrics for Evaluating Feature-Based Mapping Performance
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile