Show simple item record
Author dc.contributor.author Lang, Richard
Author dc.contributor.author Schaudt, Oliver
Author dc.contributor.author Stein, Maya
Admission date dc.date.accessioned 2019-05-29T13:30:02Z
Available date dc.date.available 2019-05-29T13:30:02Z
Publication date dc.date.issued 2017
Cita de ítem dc.identifier.citation SIAM Journal on Discrete Mathematics, Volumen 31, Issue 2, 2017, Pages 1374-1402
Identifier dc.identifier.issn 08954801
Identifier dc.identifier.other 10.1137/15M104222X
Identifier dc.identifier.uri https://repositorio.uchile.cl/handle/2250/168896
Abstract dc.description.abstract We show that for any coloring of the edges of the complete bipartite graph Kn,n with three colors there are five disjoint monochromatic cycles which together cover all but o(n) of the vertices. In the same situation, 18 disjoint monochromatic cycles together cover all vertices.
Lenguage dc.language.iso en
Publisher dc.publisher Society for Industrial and Applied Mathematics Publications
Type of license dc.rights Attribution-NonCommercial-NoDerivs 3.0 Chile
Link to License dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Source dc.source SIAM Journal on Discrete Mathematics
Keywords dc.subject Complete bipartite graph
Keywords dc.subject Monochromatic cycle partition
Keywords dc.subject Ramsey-type problem
Título dc.title Almost partitioning A 3-edge-colored Kn,n into five monochromatic cycles
Document type dc.type Artículo de revista
Cataloguer uchile.catalogador laj
Indexation uchile.index Artículo de publicación SCOPUS
uchile.cosecha uchile.cosecha SI
Files in this item
Name:
Almost-partitioning-a-3-edge-c ...
Size:
429.3Kb
Format:
PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile