Show simple item record

Authordc.contributor.authorFontbona Torres, Joaquín 
Authordc.contributor.authorPanloup, Fabien 
Admission datedc.date.accessioned2019-05-29T13:30:31Z
Available datedc.date.available2019-05-29T13:30:31Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationAnnales de l'institut Henri Poincare (B) Probability and Statistics, Volumen 53, Issue 2, 2017, Pages 503-538
Identifierdc.identifier.issn02460203
Identifierdc.identifier.other10.1214/15-AIHP724
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/168937
Abstractdc.description.abstractWe investigate the problem of the rate of convergence to equilibrium for ergodic stochastic differential equations driven by fractional Brownian motion with Hurst parameterH >1/2 and multiplicative noise component σ. When σ is constant and for every H ∈ (0, 1), it was proved by Hairer that, under some mean-reverting assumptions, such a process converges to its equilibrium at a rate of order t -α where α ∈ (0, 1) (depending on H). The aim of this paper is to extend such types of results to some multiplicative noise setting. More precisely, we show that we can recover such convergence rates when H >1/2 and the inverse of the diffusion coefficient σ is a Jacobian matrix. The main novelty of this work is a type of extension of Foster-Lyapunov like techniques to this non-Markovian setting, which allows us to put in place an asymptotic coupling scheme without resorting to deterministic contracting properties.
Lenguagedc.language.isoen
Publisherdc.publisherInstitute of Mathematical Statistics
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceAnnales de l'institut Henri Poincare (B) Probability and Statistics
Keywordsdc.subjectErgodicity
Keywordsdc.subjectFractional brownian motion
Keywordsdc.subjectLyapunov function
Keywordsdc.subjectMultiplicative noise
Keywordsdc.subjectRate of convergence to equilibrium
Keywordsdc.subjectStochastic differential equations
Keywordsdc.subjectTotal variation distance
Títulodc.titleRate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlaj
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile