Approximately coloring graphs without long induced paths
Author
dc.contributor.author
Chudnovsky, Maria
Author
dc.contributor.author
Schaudt, Oliver
Author
dc.contributor.author
Spirkl, Sophie
Author
dc.contributor.author
Stein, Maya
Author
dc.contributor.author
Zhong, Mingxian
Admission date
dc.date.accessioned
2019-05-29T13:39:20Z
Available date
dc.date.available
2019-05-29T13:39:20Z
Publication date
dc.date.issued
2017
Cita de ítem
dc.identifier.citation
Lecture Notes in Computer Science (LNCS, volume 10520), 2017
Identifier
dc.identifier.issn
16113349
Identifier
dc.identifier.issn
03029743
Identifier
dc.identifier.other
10.1007/978-3-319-68705-6_15
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/169058
Abstract
dc.description.abstract
It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on t vertices, for fixed t. We propose an algorithm that, given a 3-colorable graph without an induced path on t vertices, computes a coloring with max{5,2⌈t-12⌉-2} many colors. If the input graph is triangle-free, we only need max{4,⌈t-12⌉+1} many colors. The running time of our algorithm is O((3 t - 2+ t2) m+ n) if the input graph has n vertices and m edges.