Show simple item record

Authordc.contributor.authorToledo, F. 
Authordc.contributor.authorGarrido, C. 
Authordc.contributor.authorDíaz, M. 
Authordc.contributor.authorRondanelli, R. 
Authordc.contributor.authorJorquera S., Leila 
Authordc.contributor.authorValdivieso, P. 
Admission datedc.date.accessioned2019-05-31T15:19:06Z
Available datedc.date.available2019-05-31T15:19:06Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationJournal of Geophysical Research: Atmospheres, Volumen 123, Issue 2, 2018, Pages 1113-1131
Identifierdc.identifier.issn21698996
Identifierdc.identifier.issn2169897X
Identifierdc.identifier.other10.1002/2017JD027309
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169317
Abstractdc.description.abstractWe propose a new application of inexpensive light-emitting diode (LED)-based Sun photometers, consisting of measuring the aerosol optical thickness (AOT) with high resolution within metropolitan scales. Previously, these instruments have been used at continental scales by the GLOBE program, but this extension is already covered by more expensive and higher-precision instruments of the AERONET global network. For this we built an open source two-channeled LED-based Sun photometer based on previous developments, with improvements in the hardware, software, and modifications on the calibration procedure. Among these we highlight the use of MODTRAN to characterize the effect introduced by using LED sensors in the AOT retrieval, an open design available for the scientific community and a calibration procedure that takes advantage of a CIMEL Sun photometer located within the city, enables the intercomparison of several LED Sun photometers with a common reference. We estimated the root-mean-square error in the AOT retrieved by the prototypes as 0.006 at the 564 nm and 0.009 at the 408 nm. This error is way under the magnitude of the AOT daily cycle variability measured by us in our campaigns, even for distances closer than 15 km. In addition to inner city campaigns, we also show aerosol-tracing applications by measuring AOT variations from the city of Santiago to the Andes glaciers. Measuring AOT at high spatial resolution in urban areas can improve our understanding of urban scale aerosol circulation, providing information for solar energy planning, health policies, and climatological studies, among others.
Lenguagedc.language.isoen
Publisherdc.publisherBlackwell Publishing Ltd
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Geophysical Research: Atmospheres
Keywordsdc.subjectAOT
Keywordsdc.subjectdistributed measurement
Keywordsdc.subjectSun photometer
Títulodc.titleAOT Retrieval Procedure for Distributed Measurements With Low-Cost Sun Photometers
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorjmm
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile