Show simple item record

Authordc.contributor.authorDávila, Juan 
Authordc.contributor.authorDel Pino, Manuel 
Authordc.contributor.authorWei, Juncheng 
Admission datedc.date.accessioned2019-05-31T15:19:07Z
Available datedc.date.available2019-05-31T15:19:07Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationJournal of Differential Geometry, Volumen 109, Issue 1, 2018, Pages 111-175
Identifierdc.identifier.issn1945743X
Identifierdc.identifier.issn0022040X
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169323
Abstractdc.description.abstractThe nonlocal s-fractional minimal surface equation for Σ = ∂E where E is an open set in RN is given by HΣ s (p):= RN χE(x) − χEc(x) dx = 0 for all p ∈ Σ. |x − p|N+s Here 0 < s < 1, χ designates characteristic function, and the integral is understood in the principal value sense. The classical notion of minimal surface is recovered by letting s → 1. In this paper we exhibit the first concrete examples (beyond the plane) of nonlocal s−minimal surfaces. When s is close to 1, we first construct a connected embedded s-minimal surface of revolution in R3, the nonlocal catenoid, an analog of the standard catenoid |x3| = log(r+ r2 − 1). Rather than eventual logarithmic growth, this surface becomes asymptotic to the cone |x3| = r1 − s. We also find a two-sheet embedded s-minimal surface asymptotic to the same cone, an analog to the simple union of two parallel planes. On the other hand, for any 0 < s < 1, n, m ≥ 1, s−minimal Lawson cones |v|=α|u|, (u,v)∈Rn×Rm, are found to exist. In sharp contrast with the classical case, we prove their stability for small s and n+m=7, which suggests that unlike the classical theory (or the case s close to 1), the regularity of s-area minimizing surfaces may not hold true in dimension 7.
Lenguagedc.language.isoen
Publisherdc.publisherInternational Press of Boston, Inc.
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Differential Geometry
Keywordsdc.subjectAnalysis
Keywordsdc.subjectAlgebra and Number Theory
Keywordsdc.subjectGeometry and Topology
Títulodc.titleNonlocal s-minimal surfaces and Lawson cones
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorjmm
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile