Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points
Author
dc.contributor.author
Martinez Alvarez, V.
Author
dc.contributor.author
Barrios-Vargas, J.
Author
dc.contributor.author
Foa Torres, L.
Admission date
dc.date.accessioned
2019-05-31T15:19:09Z
Available date
dc.date.available
2019-05-31T15:19:09Z
Publication date
dc.date.issued
2018
Cita de ítem
dc.identifier.citation
Physical Review B, Volumen 97, Issue 12, 2018
Identifier
dc.identifier.issn
24699969
Identifier
dc.identifier.issn
24699950
Identifier
dc.identifier.other
10.1103/PhysRevB.97.121401
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/169335
Abstract
dc.description.abstract
Capital to topological insulators, the bulk-boundary correspondence ties a topological invariant computed from the bulk (extended) states with those at the boundary, which are hence robust to disorder. Here we put forward a different ordering unique to non-Hermitian lattices whereby a pristine system becomes devoid of extended states, a property which turns out to be robust to disorder. This is enabled by a peculiar type of non-Hermitian degeneracy where a macroscopic fraction of the states coalesce at a single point with a geometrical multiplicity of 1.