Show simple item record

Authordc.contributor.authorDaniilidis, Aris 
Authordc.contributor.authorPetitjean, Colin 
Admission datedc.date.accessioned2019-05-31T15:19:12Z
Available datedc.date.available2019-05-31T15:19:12Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationSet-Valued and Variational Analysis, Volumen 26, Issue 1, 2018, Pages 143-157
Identifierdc.identifier.issn18770541
Identifierdc.identifier.issn09276947
Identifierdc.identifier.other10.1007/s11228-017-0439-2
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169349
Abstractdc.description.abstractIn this work we are interested in the Demyanov–Ryabova conjecture for a finite family of polytopes. The conjecture asserts that after a finite number of iterations (successive dualizations), either a 1-cycle or a 2-cycle eventually comes up. In this work we establish a strong version of this conjecture under the assumption that the initial family contains “enough minimal polytopes” whose extreme points are “well placed”.
Lenguagedc.language.isoen
Publisherdc.publisherSpringer Netherlands
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceSet-Valued and Variational Analysis
Keywordsdc.subjectExhauster
Keywordsdc.subjectExtreme point
Keywordsdc.subjectPolytope
Keywordsdc.subjectSubdifferential
Keywordsdc.subjectSublinear function
Títulodc.titleA Partial Answer to the Demyanov-Ryabova Conjecture
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorjmm
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile