Show simple item record
Author dc.contributor.author Davis, Sergio
Author dc.contributor.author González, Diego
Author dc.contributor.author Gutiérrez, Gonzalo
Admission date dc.date.accessioned 2019-05-31T15:21:10Z
Available date dc.date.available 2019-05-31T15:21:10Z
Publication date dc.date.issued 2018
Cita de ítem dc.identifier.citation Entropy, Volumen 20, Issue 9, 2018
Identifier dc.identifier.issn 10994300
Identifier dc.identifier.other 10.3390/e20090696
Identifier dc.identifier.uri https://repositorio.uchile.cl/handle/2250/169521
Abstract dc.description.abstract A general framework for inference in dynamical systems is described, based on the language of Bayesian probability theory and making use of the maximum entropy principle. Taking the concept of a path as fundamental, the continuity equation and Cauchy's equation for fluid dynamics arise naturally, while the specific information about the system can be included using the maximum caliber (or maximum path entropy) principle.
Lenguage dc.language.iso en
Publisher dc.publisher MDPI AG
Type of license dc.rights Attribution-NonCommercial-NoDerivs 3.0 Chile
Link to License dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Source dc.source Entropy
Keywords dc.subject Bayesian inference
Keywords dc.subject Dynamical systems
Keywords dc.subject Fluid equations
Título dc.title Probabilistic inference for dynamical systems
Document type dc.type Artículo de revista
Cataloguer uchile.catalogador jmm
Indexation uchile.index Artículo de publicación SCOPUS
uchile.cosecha uchile.cosecha SI
Files in this item
Name:
Probabilistic_inference.pdf
Size:
256.8Kb
Format:
PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile