Show simple item record

Authordc.contributor.authorDavis, Sergio 
Authordc.contributor.authorGonzález, Diego 
Authordc.contributor.authorGutiérrez, Gonzalo 
Admission datedc.date.accessioned2019-05-31T15:21:10Z
Available datedc.date.available2019-05-31T15:21:10Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationEntropy, Volumen 20, Issue 9, 2018
Identifierdc.identifier.issn10994300
Identifierdc.identifier.other10.3390/e20090696
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169521
Abstractdc.description.abstractA general framework for inference in dynamical systems is described, based on the language of Bayesian probability theory and making use of the maximum entropy principle. Taking the concept of a path as fundamental, the continuity equation and Cauchy's equation for fluid dynamics arise naturally, while the specific information about the system can be included using the maximum caliber (or maximum path entropy) principle.
Lenguagedc.language.isoen
Publisherdc.publisherMDPI AG
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceEntropy
Keywordsdc.subjectBayesian inference
Keywordsdc.subjectDynamical systems
Keywordsdc.subjectFluid equations
Títulodc.titleProbabilistic inference for dynamical systems
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorjmm
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile