Show simple item record

Authordc.contributor.authorFelmer Aichele, Patricio 
Authordc.contributor.authordos Prazeres, Disson 
Authordc.contributor.authorTopp, Erwin 
Admission datedc.date.accessioned2019-05-31T15:21:17Z
Available datedc.date.available2019-05-31T15:21:17Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationIsrael Journal of Mathematics, Volumen 228, Issue 2, 2018, Pages 835-861
Identifierdc.identifier.issn15658511
Identifierdc.identifier.issn00212172
Identifierdc.identifier.other10.1007/s11856-018-1786-x
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169560
Abstractdc.description.abstractIn this article we are interested in interior regularity results for the solution μ∈∈ C(Ω¯) of the Dirichlet problem {μ=0inΩc,I∈(μ)=f∈inΩ where Ω is a bounded, open set and f∈∈ C(Ω¯) for all є ∈ (0, 1). For some σ ∈ (0, 2) fixed, the operator I∈ is explicitly given by I∈(μ,x)=∫RN[μ(x+z)−μ(x)]dz∈N+σ+|z|N+σ, which is an approximation of the well-known fractional Laplacian of order σ, as є tends to zero. The purpose of this article is to understand how the interior regularity of uє evolves as є approaches zero. We establish that uє has a modulus of continuity which depends on the modulus of fє, which becomes the expected Hölder profile for fractional problems, as є → 0. This analysis includes the case when fє deteriorates its modulus of continuity as є → 0.
Lenguagedc.language.isoen
Publisherdc.publisherSpringer New York LLC
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceIsrael Journal of Mathematics
Keywordsdc.subjectMathematics (all)
Títulodc.titleInterior regularity results for zeroth order operators approaching the fractional Laplacian
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorjmm
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile