Show simple item record

Authordc.contributor.authorRíos, Sebastián 
Authordc.contributor.authorAguilera, Felipe 
Authordc.contributor.authorNuñez-Gonzalez, J. 
Authordc.contributor.authorGraña, Manuel 
Admission datedc.date.accessioned2019-05-31T15:33:52Z
Available datedc.date.available2019-05-31T15:33:52Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationNeurocomputing, Volumen 326-327, 2019, Pages 71-81
Identifierdc.identifier.issn18728286
Identifierdc.identifier.issn09252312
Identifierdc.identifier.other10.1016/j.neucom.2017.01.123
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/169653
Abstractdc.description.abstractInfluencers in a social network are members that have greater effect in the online social network (OSN) than the average member. In the specific social networks known as communities of practice, where the focus is an specific area of knowledge, influencers are key for the healthy working of the OSN. Approaches to influencer detection using graph analysis of the network can be mislead by the activity of users that are not contributing to the OSN purpose, bogus generators of documents with no relevant information. We propose the use of semantic analysis to filter out such kind of interactions, achieving a simplified graph representation that preserves the main features of the OSN, allowing the detection of true influencers. Such simplification reduces computational costs and removes bogus influencers. We demonstrate the approach applying fuzzy concept analysis (FCA) and latent Dirichlet analysis (LDA) to compute document similarity measures that allow to filter out irrelevant interactions. Experimental results on a community of practice are reported.
Lenguagedc.language.isoen
Publisherdc.publisherElsevier B.V.
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceNeurocomputing
Keywordsdc.subjectFuzzy concept analysis
Keywordsdc.subjectInfluencer detection
Keywordsdc.subjectLatent topic analysis
Keywordsdc.subjectOnline Social Networks
Keywordsdc.subjectSemantic modelling
Keywordsdc.subjectSocial network analysis
Títulodc.titleSemantically enhanced network analysis for influencer identification in online social networks
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorjmm
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile