Detección de anomalías en componentes mecánicos en base a Deep Learning y Random Cut Forests
Professor Advisor
dc.contributor.advisor
López Droguett, Enrique
Author
dc.contributor.author
Aichele Figueroa, Diego Andrés
Associate professor
dc.contributor.other
Meruane Naranjo, Viviana
Associate professor
dc.contributor.other
Tapia Farías, Juan
Admission date
dc.date.accessioned
2019-08-12T14:44:31Z
Available date
dc.date.available
2019-08-12T14:44:31Z
Publication date
dc.date.issued
2019
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/170571
General note
dc.description
Memoria para optar al título de Ingeniero Civil Mecánico
es_ES
Abstract
dc.description.abstract
Dentro del área de mantenimiento, el monitorear un equipo puede ser de gran utilidad ya que permite advertir cualquier anomalía en el funcionamiento interno de éste, y así, se puede corregir cualquier desperfecto antes de que se produzca una falla de mayor gravedad.
En data mining, detección de anomalías es el ejercicio de identificar elementos anómalos, es decir, aquellos elementos que difieren a lo común dentro de un set de datos. Detección de anomalías tiene aplicación en diferentes dominios, por ejemplo, hoy en día se utiliza en bancos para detectar compras fraudulentas y posibles estafas a través de un patrón de comportamiento del usuario, por ese motivo se necesitan abarcar grandes cantidades de datos por lo que su desarrollo en aprendizajes de máquinas probabilísticas es imprescindible. Cabe destacar que se ha desarrollado una variedad de algoritmos para encontrar anomalías, una de las más famosas es el Isolated Forest dentro de los árboles de decisión. Del algoritmo de Isolated Forest han derivado distintos trabajos que proponen mejoras para éste, como es el Robust Random Cut Forest el cual, por un lado permite mejorar la precisión para buscar anomalías y, también, entrega la ventaja de poder realizar un estudio dinámico de datos y buscar anomalías en tiempo real. Por otro lado, presenta la desventaja de que entre más atributos contengan los sets de datos más tiempo de cómputo tendrá para detectar una anomalía. Por ende, se utilizará un método de reducción de atributos, también conocido como reducción de dimensión, por último se estudiará como afectan tanto en efectividad y eficiencia al algoritmo sin reducir la dimensión de los datos.
En esta memoria se analiza el algoritmo Robust Random Cut Forest para finalmente entregar una posible mejora a éste. Para poner en prueba el algoritmo se realiza un experimento de barras de acero, donde se obtienen como resultado sus vibraciones al ser excitado por un ruido blanco. Estos datos se procesan en tres escenarios distintos: Sin reducción de dimensiones, análisis de componentes principales(principal component analysis) y autoencoder. En base a esto, el primer escenario (sin reducción de dimensiones) servirá para establecer un punto de orientación, para ver como varían el escenario dos y tres en la detección de anomalía, en efectividad y eficiencia. %partida para detección de anomalía, luego se ver si esta mejora Luego, se realiza el estudio en el marco de tres escenarios para detectar puntos anómalos;
En los resultados se observa una mejora al reducir las dimensiones en cuanto a tiempo de cómputo (eficiencia) y en precisión (efectividad) para encontrar una anomalía, finalmente los mejores resultados son con análisis de componentes principales (principal component analysis).