Show simple item record

Authordc.contributor.authorWolff Rojas, Patricio 
Authordc.contributor.authorGrana, Manuel 
Authordc.contributor.authorRíos, Sebastián A. 
Authordc.contributor.authorYarza, Maria Begoña 
Admission datedc.date.accessioned2019-10-11T17:30:05Z
Available datedc.date.available2019-10-11T17:30:05Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationBioMed Research International, Volumen 2019,
Identifierdc.identifier.issn23146141
Identifierdc.identifier.issn23146133
Identifierdc.identifier.other10.1155/2019/8532892
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171248
Abstractdc.description.abstract© 2019 Patricio Wolff et al.Hospital readmission prediction in pediatric hospitals has received little attention. Studies have focused on the readmission frequency analysis stratified by disease and demographic/geographic characteristics but there are no predictive modeling approaches, which may be useful to identify preventable readmissions that constitute a major portion of the cost attributed to readmissions. Objective. To assess the all-cause readmission predictive performance achieved by machine learning techniques in the emergency department of a pediatric hospital in Santiago, Chile. Materials. An all-cause admissions dataset has been collected along six consecutive years in a pediatric hospital in Santiago, Chile. The variables collected are the same used for the determination of the child's treatment administrative cost. Methods. Retrospective predictive analysis of 30-day readmission was formulated as a binary classification problem. We report classification results achieved
Lenguagedc.language.isoen
Publisherdc.publisherHindawi Limited
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceBioMed Research International
Keywordsdc.subjectBiochemistry, Genetics and Molecular Biology (all)
Keywordsdc.subjectImmunology and Microbiology (all)
Títulodc.titleMachine Learning Readmission Risk Modeling: A Pediatric Case Study
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile