Show simple item record
Author | dc.contributor.author | Sauré, Denis | |
Author | dc.contributor.author | Vielma, Juan Pablo | |
Admission date | dc.date.accessioned | 2019-10-11T17:30:09Z | |
Available date | dc.date.available | 2019-10-11T17:30:09Z | |
Publication date | dc.date.issued | 2019 | |
Cita de ítem | dc.identifier.citation | Operations Research, Volumen 67, Issue 2, 2019, Pages 315-338 | |
Identifier | dc.identifier.issn | 15265463 | |
Identifier | dc.identifier.issn | 0030364X | |
Identifier | dc.identifier.other | 10.1287/opre.2018.1790 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/171271 | |
Abstract | dc.description.abstract | © 2019 INFORMS.Questionnaires for adaptive choice-based conjoint analysis aim at minimizing some measure of the uncertainty associated with estimates of preference parameters (e.g., partworths). Bayesian approaches to conjoint analysis quantify this uncertainty with a multivariate distribution that is updated after the respondent answers. Unfortunately, this update often requires multidimensional integration, which effectively reduces the adaptive selection of questions to impractical enumeration. An alternative approach is the polyhedral method for adaptive conjoint analysis, which quantifies the uncertainty through a (convex) polyhedron. The approach has a simple geometric interpretation and allows for quick credibility-region updates and effective optimization-based heuristics for adaptive question selection. However, its performance deteriorates with high response-error rates. Available adaptations to this method do not preserve all of the geometric simplicity and interpretability | |
Lenguage | dc.language.iso | en | |
Publisher | dc.publisher | INFORMS Inst.for Operations Res.and the Management Sciences | |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
Source | dc.source | Operations Research | |
Keywords | dc.subject | Bayesian models | |
Keywords | dc.subject | Conjoint analysis | |
Keywords | dc.subject | Geometric methods | |
Keywords | dc.subject | Mixed-integer programming | |
Título | dc.title | Ellipsoidal methods for adaptive choice-based conjoint analysis | |
Document type | dc.type | Artículo de revista | |
Cataloguer | uchile.catalogador | SCOPUS | |
Indexation | uchile.index | Artículo de publicación SCOPUS | |
uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- item_85068450104.pdf
- Size:
- 1.963Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile