Show simple item record

Authordc.contributor.authorSan Martin, Gabriel 
Authordc.contributor.authorLópez Droguett, Enrique 
Authordc.contributor.authorMeruane Naranjo, Viviana 
Authordc.contributor.authordas Chagas Moura, Márcio 
Admission datedc.date.accessioned2019-10-11T17:31:09Z
Available datedc.date.available2019-10-11T17:31:09Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationStructural Health Monitoring, Volumen 18, Issue 4, 2019, Pages 1092-1128
Identifierdc.identifier.issn17413168
Identifierdc.identifier.issn14759217
Identifierdc.identifier.other10.1177/1475921718788299
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171309
Abstractdc.description.abstract© The Author(s) 2018.One of the main challenges that the industry faces when dealing with massive data for failure diagnosis is high dimensionality of such data. This can be tackled by dimensionality reduction method such as principal components analysis, which usually results in an improved fault diagnosis. Other available techniques include auto-encoders and its variants denoising auto-encoders and sparse auto-encoders. Most recently, variational auto-encoders are one of the most promising techniques for unsupervised learning with successful applications in image processing and speech recognition. Differently from other auto-encoder methods, variational auto-encoders use variational inference to generate a latent representation of the data and impose a distribution over the latent variables and the data itself. In this article, we propose a fully unsupervised deep variational auto-encoder-based approach for dimensionality reduction in fault diagnosis and explore the variational auto-
Lenguagedc.language.isoen
Publisherdc.publisherSAGE Publications Ltd
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceStructural Health Monitoring
Keywordsdc.subjectBall bearings
Keywordsdc.subjectdimensionality reduction
Keywordsdc.subjectfault diagnosis
Keywordsdc.subjectvariational auto-encoders
Keywordsdc.subjectvariational inference
Keywordsdc.subjectvibration analysis
Títulodc.titleDeep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile