Show simple item record
Author | dc.contributor.author | Pérez-Aros, Pedro | |
Author | dc.contributor.author | Thibault, Lionel | |
Admission date | dc.date.accessioned | 2019-10-11T17:31:21Z | |
Available date | dc.date.available | 2019-10-11T17:31:21Z | |
Publication date | dc.date.issued | 2019 | |
Cita de ítem | dc.identifier.citation | Journal of Convex Analysis, Volumen 26, Issue 3, 2019, | |
Identifier | dc.identifier.issn | 09446532 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/171362 | |
Abstract | dc.description.abstract | © 2019 Heldermann Verlag. All rights reserved.In this work we prove that if X is a complete locally convex space and {equation presented} is a function such that f -x∗attains its minimum for every x∗∈ U, where U is an open set with respect to the Mackey topology in X∗, then for every γ ∈ R and x∗∈ U the set {equation presented} is relatively weakly compact. This result corresponds to an extension of Theorem 2.4 in [J. Saint Raymond, Mediterr. J. Math. 10 (2013), no. 2, 927-940]. Directional James compactness theorems are also derived. | |
Lenguage | dc.language.iso | en | |
Publisher | dc.publisher | Heldermann Verlag | |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
Source | dc.source | Journal of Convex Analysis | |
Keywords | dc.subject | Conjugate functions | |
Keywords | dc.subject | Convex functions | |
Keywords | dc.subject | Epi-pointed functions | |
Keywords | dc.subject | Inf-compact functions | |
Keywords | dc.subject | Inf-convolution | |
Keywords | dc.subject | Weak compactness | |
Título | dc.title | Weak compactness of sublevel sets in complete locally convex spaces | |
Document type | dc.type | Artículo de revista | |
Cataloguer | uchile.catalogador | SCOPUS | |
Indexation | uchile.index | Artículo de publicación SCOPUS | |
uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- item_85056714689.pdf
- Size:
- 1.760Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile