Show simple item record

Authordc.contributor.authorPérez-Aros, Pedro 
Authordc.contributor.authorThibault, Lionel 
Admission datedc.date.accessioned2019-10-11T17:31:21Z
Available datedc.date.available2019-10-11T17:31:21Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationJournal of Convex Analysis, Volumen 26, Issue 3, 2019,
Identifierdc.identifier.issn09446532
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171362
Abstractdc.description.abstract© 2019 Heldermann Verlag. All rights reserved.In this work we prove that if X is a complete locally convex space and {equation presented} is a function such that f -x∗attains its minimum for every x∗∈ U, where U is an open set with respect to the Mackey topology in X∗, then for every γ ∈ R and x∗∈ U the set {equation presented} is relatively weakly compact. This result corresponds to an extension of Theorem 2.4 in [J. Saint Raymond, Mediterr. J. Math. 10 (2013), no. 2, 927-940]. Directional James compactness theorems are also derived.
Lenguagedc.language.isoen
Publisherdc.publisherHeldermann Verlag
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Convex Analysis
Keywordsdc.subjectConjugate functions
Keywordsdc.subjectConvex functions
Keywordsdc.subjectEpi-pointed functions
Keywordsdc.subjectInf-compact functions
Keywordsdc.subjectInf-convolution
Keywordsdc.subjectWeak compactness
Títulodc.titleWeak compactness of sublevel sets in complete locally convex spaces
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile