Show simple item record

Authordc.contributor.authorAranda, Alfredo 
Authordc.contributor.authorValencia, Alvaro 
Admission datedc.date.accessioned2019-10-15T12:25:29Z
Available datedc.date.available2019-10-15T12:25:29Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationJournal of Mechanics in Medicine and Biology, Volumen 19, Issue 3, 2019,
Identifierdc.identifier.issn02195194
Identifierdc.identifier.other10.1142/S0219519419500143
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171702
Abstractdc.description.abstractFluid-mechanical and morphological parameters are recognized as major factors in the rupture risk of human aneurysms. On the other hand, it is well known that a lot of machine learning tools are available to study a variety of problems in many fields. In this work, fluid-structure interaction (FSI) simulations were carried out to examine a database of 60 real saccular cerebral aneurysms (30 ruptured and 30 unruptured) using reconstructions by angiography images. With the results of the simulations and geometric analyses, we studied the analysis of variance (ANOVA) statistic test in many variables and we obtained that aspect ratio (AR), bottleneck factor (BNF), maximum height of the aneurysms (MH), relative residence time (RRT), Womersley number (WN) and Von-Mises strain (VMS) are statically significant and good predictors for the models. In consequence, these ones were used in five machine learning algorithms to determine the rupture risk pre
Lenguagedc.language.isoen
Publisherdc.publisherWorld Scientific Publishing Co. Pte Ltd
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceJournal of Mechanics in Medicine and Biology
Keywordsdc.subjectcerebral aneurysm simulations
Keywordsdc.subjectcomputational applications
Keywordsdc.subjectFSI simulations
Keywordsdc.subjectMachine learning
Keywordsdc.subjectstatistic predictions
Keywordsdc.subjectstatistical significance
Títulodc.titleCOMPUTATIONAL STUDY on the RUPTURE RISK in REAL CEREBRAL ANEURYSMS with GEOMETRICAL and FLUID-MECHANICAL PARAMETERS USING FSI SIMULATIONS and MACHINE LEARNING ALGORITHMS
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile