Show simple item record

Authordc.contributor.authorMedina, Exequiel 
Authordc.contributor.authorVillalobos, Pablo 
Authordc.contributor.authorCoñuecar, Ricardo 
Authordc.contributor.authorRamírez-Sarmiento, César A. 
Authordc.contributor.authorBabul, Jorge 
Admission datedc.date.accessioned2019-10-22T03:13:54Z
Available datedc.date.available2019-10-22T03:13:54Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationScientific Reports, Volumen 9, Issue 1, 2019,
Identifierdc.identifier.issn20452322
Identifierdc.identifier.other10.1038/s41598-019-41819-5
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/172012
Abstractdc.description.abstractForkhead box P (FoxP) proteins are members of the versatile Fox transcription factors, which control the timing and expression of multiple genes for eukaryotic cell homeostasis. Compared to other Fox proteins, they can form domain-swapped dimers through their DNA-binding –forkhead– domains, enabling spatial reorganization of distant chromosome elements by tethering two DNA molecules together. Yet, domain swapping stability and DNA binding affinity varies between different FoxP proteins. Experimental evidence suggests that the protonation state of a histidine residue conserved in all Fox proteins is responsible for pH-dependent modulation of these interactions. Here, we explore the consequences of the protonation state of another histidine (H59), only conserved within FoxM/O/P subfamilies, on folding and dimerization of the forkhead domain of human FoxP1. Dimer dissociation kinetics and equilibrium unfolding experiments demonstrate that protonation of H59 leads to destabilization of the domain-swapped dimer due to an increase in free energy difference between the monomeric and transition states. This pH–dependence is abolished when H59 is mutated to alanine. Furthermore, anisotropy measurements and molecular dynamics evidence that H59 has a direct impact in the local stability of helix H3. Altogether, our results highlight the relevance of H59 in domain swapping and folding stability of FoxP1.
Lenguagedc.language.isoen
Publisherdc.publisherNature Publishing Group
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceScientific Reports
Keywordsdc.subjectMultidisciplinary
Títulodc.titleThe protonation state of an evolutionarily conserved histidine modulates domainswapping stability of FoxP1
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile