Show simple item record

Authordc.contributor.authorFelmer Aichele, Patricio 
Authordc.contributor.authorTopp, Erwin 
Admission datedc.date.accessioned2019-10-30T15:18:53Z
Available datedc.date.available2019-10-30T15:18:53Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationProceedings of the Royal Society of Edinburgh Section A: Mathematics, Volumen 149, Issue 2, 2019, Pages 533-560
Identifierdc.identifier.issn14737124
Identifierdc.identifier.issn03082105
Identifierdc.identifier.other10.1017/prm.2018.38
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/172137
Abstractdc.description.abstractIn this paper, we study the fractional Dirichlet problem with the homogeneous exterior data posed on a bounded domain with Lipschitz continuous boundary. Under an extra assumption on the domain, slightly weaker than the exterior ball condition, we are able to prove existence and uniqueness of solutions which are Hölder continuous on the boundary. In proving this result, we use appropriate barrier functions obtained by an approximation procedure based on a suitable family of zero-th order problems. This procedure, in turn, allows us to obtain an approximation scheme for the Dirichlet problem through an equicontinuous family of solutions of the approximating zero-th order problems on. Both results are extended to an ample class of fully non-linear operators.
Lenguagedc.language.isoen
Publisherdc.publisherCambridge University Press
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceProceedings of the Royal Society of Edinburgh Section A: Mathematics
Keywordsdc.subjectE
Keywordsdc.subjecte
Títulodc.titleContinuous solutions and approximating scheme for fractional Dirichlet problems on Lipschitz domains
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile