Walrasian equilibrium as limit of competitive equilibria without divisible goods
Author
dc.contributor.author
Florig, Michael
Author
dc.contributor.author
Rivera, Jorge
Admission date
dc.date.accessioned
2019-10-30T15:40:22Z
Available date
dc.date.available
2019-10-30T15:40:22Z
Publication date
dc.date.issued
2019
Cita de ítem
dc.identifier.citation
Journal of Mathematical Economics, Volumen 84,
Identifier
dc.identifier.issn
18731538
Identifier
dc.identifier.issn
03044068
Identifier
dc.identifier.other
10.1016/j.jmateco.2019.05.001
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/172601
Abstract
dc.description.abstract
This paper investigates the limit properties of a sequence of competitive outcomes existing for economies where all commodities are indivisible, as indivisibility vanishes. The nature of this limit depends on whether the “strong survival assumption” is assumed or not in the limit economy, a standard “convex economy”. If this condition holds, then the equilibrium sequence converges to a Walras equilibrium for the convex economy; otherwise it converges to a hierarchic equilibrium, a competitive outcome existing in this economy despite the fact that a Walras equilibrium might not exist.