Show simple item record

Authordc.contributor.authorBessagnet, Bertrand 
Authordc.contributor.authorCouvidat, Florian 
Authordc.contributor.authorLemaire, Vincent 
Admission datedc.date.accessioned2019-12-04T13:28:23Z
Available datedc.date.available2019-12-04T13:28:23Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationEnvironmental Modelling and Software 116 (2019) 100–109es_ES
Identifierdc.identifier.other10.1016/j.envsoft.2019.02.017
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/172743
Abstractdc.description.abstractA methodology rested on model-based machine learning using simple linear regressions and the parameterizations of the main physics and chemistry processes has been developed to perform highly-resolved air quality simulations. The training of the methodology is (i) completed over a 6-month period using the outputs of the chemical transport model CHIMERE, and (ii) then applied over the subsequent 6 months. Despite rough assumptions, this new methodology performs as well as the raw CHIMERE simulation for daily mean concentrations of the main criteria air pollutants (NO2, Ozone, PM10 and PM2.5) with correlations ranging from 0.75 to 0.83 for the particulate matter and up to 0.86 for the maximum ozone concentrations. Some improvements are investigated to expand this methodology to several other uses, but at this stage the method can be used for air quality forecasting, analysis of pollution episodes and mapping. This study also confirms that including a minimum set of selected physical parameterizations brings a high added value on machine learning processes.es_ES
Patrocinadordc.description.sponsorshipFrench Ministry in charge of Ecology (MTES) UN-ECE CLRTAP (EMEP) Centre National de la Recherche Scientifique (CNRS) NILUes_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceEnvironmental Modelling and Softwarees_ES
Keywordsdc.subjectAir quality modellinges_ES
Keywordsdc.subjectLinear regressiones_ES
Keywordsdc.subjectStatisticses_ES
Keywordsdc.subjectMetamodeles_ES
Keywordsdc.subjectResolutiones_ES
Keywordsdc.subjectIncrementes_ES
Títulodc.titleA statistical physics approach to perform fast highly-resolved air quality simulations – A new step towards the meta-modelling of chemistry transport modelses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES
Indexationuchile.indexArtículo de publicación SCOPUSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile