Show simple item record

Authordc.contributor.authorPino Manresa, Manuel del 
Authordc.contributor.authorJerrard, Robert L. 
Authordc.contributor.authorMusso, Mónica 
Admission datedc.date.accessioned2020-04-07T17:37:01Z
Available datedc.date.available2020-04-07T17:37:01Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationCommunications in Mathematical Physics Volumen: 373 Número: 3 Páginas: 971-1009 Feb 2020es_ES
Identifierdc.identifier.other10.1007/s00220-019-03632-z
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/173833
Abstractdc.description.abstractWe consider the wave equation epsilon(2)(-partial derivative(2)(t) + Delta)u + f(u) = 0 for 0 < epsilon << 1, where f is the derivative of a balanced, double-well potential, the model case being f(u) = u - u(3). For equations of this form, we construct solutions that exhibit an interface of thickness O(epsilon) that separates regions where the solution is O(epsilon(k)) close to +/- 1, for k >= 1, and that is close to a timelike hypersurface of vanishing Minkowskian mean curvature. This provides a Minkowskian analog of the numerous results that connect the Euclidean Allen-Cahn equation and minimal surfaces or the parabolic Allen-Cahn equation and motion by mean curvature. Compared to earlier results of the same character, we develop a new constructive approach that applies to a larger class of nonlinearities and yields much more precise information about the solutions under consideration.es_ES
Patrocinadordc.description.sponsorshipUK Royal Society Research Professorship Natural Sciences and Engineering Research Council of Canada Natural Sciences and Engineering Research Council of Canada 261955 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1160135 PAI AFB-170001es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceCommunications in Mathematical Physicses_ES
Keywordsdc.subjectAllen-Cahn equationes_ES
Keywordsdc.subjectMinimal surface equationes_ES
Keywordsdc.subjectPhase-transitionses_ES
Keywordsdc.subjectGradient theoryes_ES
Keywordsdc.subjectKinkses_ES
Keywordsdc.subjectHypersurfaceses_ES
Keywordsdc.subjectCurvaturees_ES
Keywordsdc.subjectMotiones_ES
Keywordsdc.subjectSpacees_ES
Títulodc.titleInterface dynamics in semilinear wave equationses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile