Show simple item record

Authordc.contributor.authorProtter, Philip 
Authordc.contributor.authorQiu, Lisha 
Authordc.contributor.authorSan Martin Aristegui, Jaime 
Admission datedc.date.accessioned2020-04-16T20:53:30Z
Available datedc.date.available2020-04-16T20:53:30Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationStochastic Processes and their Applications 130 (2020) 2296–2311es_ES
Identifierdc.identifier.other10.1016/j.spa.2019.07.003
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/173909
Abstractdc.description.abstractIn traditional works on numerical schemes for solving stochastic differential equations (SDEs), the globally Lipschitz assumption is often assumed to ensure different types of convergence. In practice, this is often too strong a condition. Brownian motion driven SDEs used in applications sometimes have coefficients which are only Lipschitz on compact sets, but the paths of the SDE solutions can be arbitrarily large. In this paper, we prove convergence in probability and a weak convergence result under a less restrictive assumption, that is, locally Lipschitz and with no finite time explosion. We prove if a numerical scheme converges in probability uniformly on any compact time set (UCP) with a certain rate under a global Lipschitz condition, then the UCP with the same rate holds when a globally Lipschitz condition is replaced with a locally Lipschitz plus no finite explosion condition. For the Euler scheme, weak convergence of the error process is also established. The main contribution of this paper is the proof of root n weak convergence of the normalized error process and the limit process is also provided. We further study the boundedness of the second moments of the weak limit process and its running supremum under both global Lipschitz and locally Lipschitz conditions. (C) 2019 Elsevier B.V. All rights reserved.es_ES
Patrocinadordc.description.sponsorshipNational Science Foundation (NSF) DMS-1612758 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT PIA/BASAL AFB170001es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceStochastic Processes and their Applicationses_ES
Keywordsdc.subjectStochastic differential equationes_ES
Keywordsdc.subjectLocally Lipschitzes_ES
Keywordsdc.subjectConvergence in probabilityes_ES
Keywordsdc.subjectEuler schemees_ES
Keywordsdc.subjectNormalized error processes_ES
Keywordsdc.subjectWeak convergencees_ES
Títulodc.titleAsymptotic error distribution for the Euler scheme with locally Lipschitz coefficientses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile