Deep semi-supervised generative adversarial fault diagnostics of rolling element bearings
Author | dc.contributor.author | Verstraete, David Benjamin | |
Author | dc.contributor.author | López Droguett, Enrique | |
Author | dc.contributor.author | Meruane, Viviana | |
Author | dc.contributor.author | Modarres, Mohammad | |
Author | dc.contributor.author | Ferrada, Andrés | |
Admission date | dc.date.accessioned | 2020-04-22T22:15:01Z | |
Available date | dc.date.available | 2020-04-22T22:15:01Z | |
Publication date | dc.date.issued | 2020 | |
Cita de ítem | dc.identifier.citation | Structural Health Monitoring 2020, Vol. 19(2) 390–411 | es_ES |
Identifier | dc.identifier.other | 10.1177/1475921719850576 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/174024 | |
Abstract | dc.description.abstract | With the availability of cheaper multisensor suites, one has access to massive and multidimensional datasets that can and should be used for fault diagnosis. However, from a time, resource, engineering, and computational perspective, it is often cost prohibitive to label all the data streaming into a database in the context of big machinery data, that is, massive multidimensional data. Therefore, this article proposes both a fully unsupervised and a semi-supervised deep learning enabled generative adversarial network-based methodology for fault diagnostics. Two public datasets of vibration data from rolling element bearings are used to evaluate the performance of the proposed methodology for fault diagnostics. The results indicate that the proposed methodology is a promising approach for both unsupervised and semi-supervised fault diagnostics. | es_ES |
Patrocinador | dc.description.sponsorship | Chilean National Fund for Scientific and Technological Development (Fondecyt) under Grant No. 1160494. | es_ES |
Lenguage | dc.language.iso | en | es_ES |
Publisher | dc.publisher | SAGE | es_ES |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | * |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
Source | dc.source | Structural Health Monitoring | |
Keywords | dc.subject | Generative adversarial networks | es_ES |
Keywords | dc.subject | Fault diagnostics | es_ES |
Keywords | dc.subject | Deep learning | es_ES |
Keywords | dc.subject | Health monitoring | es_ES |
Keywords | dc.subject | Ball bearings | es_ES |
Keywords | dc.subject | Vibration analysis | es_ES |
Título | dc.title | Deep semi-supervised generative adversarial fault diagnostics of rolling element bearings | es_ES |
Document type | dc.type | Artículo de revista | |
dcterms.accessRights | dcterms.accessRights | Acceso abierto | |
Cataloguer | uchile.catalogador | ivv | es_ES |
Indexation | uchile.index | Artículo de publicación ISI | es_ES |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas