Show simple item record

Authordc.contributor.authorMolina, Eduardo 
Authordc.contributor.authorArancibia, Gloria 
Authordc.contributor.authorSepúlveda, Josefa 
Authordc.contributor.authorRoquer, Tomás 
Authordc.contributor.authorMery, Domingo 
Authordc.contributor.authorMorata Céspedes, Diego 
Admission datedc.date.accessioned2020-04-29T14:44:32Z
Available datedc.date.available2020-04-29T14:44:32Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationRock Mechanics and Rock Engineering Vol. 53 No. 3 Mar 2020es_ES
Identifierdc.identifier.other10.1007/s00603-019-01967-6
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174221
Abstractdc.description.abstractThe Southern Volcanic Zone of the Andes has a high potential in terms of geothermal resources and is an exceptional and poorly explored natural laboratory to study the interplay between tectonic stresses, thermal damage, low-permeable crystalline rocks, and fluid flow. Permeability is mostly related to the damage zones associated with the faults controlling regional tectonics, namely, the Liquine-Ofqui Fault System and Andean Transverse Faults. This research presents a laboratory approach comprising a characterization of the analogue host rock from a shallow, low-to-medium temperature geothermal system surrounding the Liquine area in Southern Chile (39 degrees S) to better constrain intrinsic and extrinsic factors which allow permeable pathways to exist. We analyse the effect of thermal stress at 25, 150, and 210 degrees C in a granodiorite, measuring some petrophysical properties before and after applying thermal damage, and then loaded the samples until failure. We also compared petrophysical properties with the fracture network characterization using X-ray microcomputed tomography imaging, segmentation, and fluid flow computational simulations. The results show that thermal stress produces intercrystalline microcracks, which result in: (1) an increase in capillary absorption; (2) a decrease in ultrasonic wave velocities; (3) a decrease in compressive strength; (4) a decrease in fracture aperture, and (5) fluid flow simulations indicate that permeability is similar at different temperatures. We conclude that for the granodiorite host rock of the Liquine geothermal system, the combined effect of thermal stress, even at low temperature, may constitute an effective mechanism for sustaining permeability at shallowest depths.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Sourcedc.sourceRock Mechanics and Rock Engineeringes_ES
Keywordsdc.subjectPrimary low-permeability granitoidses_ES
Keywordsdc.subjectThermal decayes_ES
Keywordsdc.subjectArtificial fractureses_ES
Keywordsdc.subjectImage analysises_ES
Keywordsdc.subjectGeothermal systemes_ES
Títulodc.titleDigital rock approach to model the permeability in an artificially heated and fractured granodiorite from the liquine geothermal system (39 degrees s)es_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso a solo metadatoses_ES
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record