Show simple item record

Authordc.contributor.authorMaldonado, Sebastián 
Authordc.contributor.authorLópez, Julio 
Authordc.contributor.authorJiménez Molina, Ángel 
Authordc.contributor.authorLira, Hernán 
Admission datedc.date.accessioned2020-05-04T20:20:37Z
Available datedc.date.available2020-05-04T20:20:37Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationExpert Systems With Applications 143 (2020) 112988es_ES
Identifierdc.identifier.other10.1016/j.eswa.2019.112988
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174284
Abstractdc.description.abstractIn this study, an expert system is presented for analyzing the mental workload of interacting with a mobile phone while facing common daily tasks. Psychophysiological signals were collected from various devices, each characterized by a different cost and obtrusiveness. To deal with user-level signal data, a support vector machine-based feature selection approach is proposed. Given the limited person-level information available, our goal was to construct robust models by pooling population-level information across users (as a heterogeneity control). A single optimization problem that combines four objectives is proposed: model, margin maximization, feature selection, and heterogeneity control. The costs of using the devices were estimated, leading to a decision tool that allowed experiment designers to evaluate the marginal benefit of using a given device in terms of performance and its cost.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1160738 1160894 1181809 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDEF ID16I10222 Complex Engineering Systems Institute, ISCI (CONICYT PIA/BASAL) AFB180003es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceExpert Systems with Applicationses_ES
Keywordsdc.subjectSupport vector machineses_ES
Keywordsdc.subjectFeature selectiones_ES
Keywordsdc.subjectHeterogeneity controles_ES
Keywordsdc.subjectMental workloades_ES
Keywordsdc.subjectGroup penalty functionses_ES
Títulodc.titleSimultaneous feature selection and heterogeneity control for SVM classification: an application to mental workload assessmentes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorivves_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile