Show simple item record

Authordc.contributor.authorGarcía, José 
Authordc.contributor.authorLalla Ruiz, Eduardo 
Authordc.contributor.authorVoss, Stefan 
Authordc.contributor.authorLópez Droguett, Enrique 
Admission datedc.date.accessioned2020-05-06T19:42:50Z
Available datedc.date.available2020-05-06T19:42:50Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationInternational Journal of Machine Learning and Cybernetics, Feb 2020es_ES
Identifierdc.identifier.other10.1007/s13042-020-01085-8
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174457
Abstractdc.description.abstractSolving combinatorial optimization problems is of great interest in the areas of computer science and operations research. Optimization algorithms and particularly metaheuristics are constantly improved in order to reduce execution times, increase the quality of solutions and address larger instances. In this work, an improvement of the binarization framework which uses the K-means technique is developed. To achieve this, a perturbation operator based on the K-nearest neighbor technique is incorporated into the framework with the aim of generating more robust binarized algorithms. The technique of K-nearest neighbors is used for improving the properties of diversification and intensification of metaheuristics in its binary version. The contribution of the K-nearest neighbors perturbation operator to the final results is systematically analyzed. Particle Swarm Optimization and Cuckoo Search are used as metaheuristic techniques. To verify the results, the well-known multidimensional knapsack problem is tackled. A computational comparison is made with the state-of-the-art of metaheuristic techniques that use general mechanisms of binarization. The results show that our improved framework produces consistently better results. In this sense, the contribution of the operator which uses the K-nearest neighbors technique is investigated finding that this operator contributes significantly to the quality of the results.es_ES
Patrocinadordc.description.sponsorshipCONICYT/FONDECYT/INICIACION/11180056es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceInternational Journal of Machine Learning and Cyberneticses_ES
Keywordsdc.subjectCombinatorial Optimisationes_ES
Keywordsdc.subjectMachine Learninges_ES
Keywordsdc.subjectMetaheuristicses_ES
Keywordsdc.subjectKNNes_ES
Keywordsdc.subjectK-meanses_ES
Keywordsdc.subjectKnapsackes_ES
Títulodc.titleEnhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problemes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile