Show simple item record

Authordc.contributor.authorTassara, Santiago 
Authordc.contributor.authorReich Morales, Martín 
Authordc.contributor.authorKonecke, Brian A. 
Authordc.contributor.authorGonzález Jiménez, José María 
Authordc.contributor.authorSimon, Adam C. 
Authordc.contributor.authorMorata Céspedes, Diego 
Authordc.contributor.authorBarra Pantoja, Fernando 
Authordc.contributor.authorFiege, Adrián 
Authordc.contributor.authorSchilling, Manuel E. 
Authordc.contributor.authorCorgne, Alexandre 
Admission datedc.date.accessioned2020-05-09T22:51:43Z
Available datedc.date.available2020-05-09T22:51:43Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationFront. Earth Sci., 11 February 2020es_ES
Identifierdc.identifier.other10.3389/feart.2020.00029
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174635
Abstractdc.description.abstractThe oxidation state of the Earth's mantle and its partial melting products exert a key control on the behavior and distribution of sulfur and chalcophile and siderophile elements between the mantle and crust, underpinning models of ore deposit formation. Whether the oxidized nature of magmas is inherited from the asthenospheric mantle source or acquired during ascent and differentiation is vigorously debated, limiting our understanding of the mechanisms of extraction of sulfur and metals from the mantle. Here, we focused on the redox-sensitive behavior of sulfur in apatite crystallized from quenched alkaline basaltic melts preserved within a peridotite xenolith from the El Deseado Massif auriferous province in southern Patagonia. We took advantage of this unique setting to elucidate the redox evolution of melts during their ascent through the subcontinental lithospheric mantle (SCLM) and grasp the inner workings of the Earth's mantle during gold metallogenesis. Our data reveal that an initially reduced silicate melt (Delta FMQ -2.2 to -1.2) was oxidized to Delta FMQ between 0 and 1.2 during percolation and interaction with the surrounding peridotite wall-rock (Delta FMQ 0 to +0.8). This process triggered changes in sulfur speciation and solubility in the silicate melt, boosting the potential of the melt to scavenge ore metals such as gold. We suggest that large redox gradients resulting from the interaction between ascending melts and the surrounding mantle can potentially modify the oxidation state of primitive melts and enhance their metallogenic fertility. Among other factors including an enriched metal source and favorable geodynamic conditions, redox gradients in the mantle may exert a first-order control on the global-scale localization of crustal provinces endowed with gold deposits.es_ES
Patrocinadordc.description.sponsorshipIniciativa Cientifica Milenio through Millennium Nucleus for Metal Tracinges_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherFrontiers Mediaes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceFrontiers in Earth Sciencees_ES
Keywordsdc.subjectMelt-mantle interactiones_ES
Keywordsdc.subjectOxidation statees_ES
Keywordsdc.subjectApatitees_ES
Keywordsdc.subjectXANESes_ES
Keywordsdc.subjectGoldes_ES
Keywordsdc.subjectOre depositses_ES
Títulodc.titleUnraveling the Effects of Melt-Mantle Interactions on the Gold Fertility of Magmases_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile