Show simple item record

Authordc.contributor.authorHerrmann, Benjamín 
Authordc.contributor.authorBehzad, Masoud 
Authordc.contributor.authorCardemil Iglesias, José 
Authordc.contributor.authorCalderón Muñoz, Williams 
Authordc.contributor.authorFernández Urrutia, Rubén 
Admission datedc.date.accessioned2020-05-18T21:29:10Z
Available datedc.date.available2020-05-18T21:29:10Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationSolar Energy 198 (2020) 343–354es_ES
Identifierdc.identifier.other10.1016/j.solener.2020.01.062
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/174797
Abstractdc.description.abstractOpen volumetric solar receivers (VSRs) are a promising technology for concentrated solar power plants due to their capability to provide heat using ambient air as the working fluid operating at temperatures over 700 degrees C. Nevertheless, VSRs are challenged by the unsteadiness and high intensity of the radiation flux, which may cause unreliable or unsafe outflow temperatures, and may compromise the lifetime of the porous ceramic absorbers due to extreme thermal loads, thermal shock or thermal fatigue. We propose a data assimilation framework to address these matters using blower actuation, measurements from sensors located in the outflow stream of air, and a model for the conjugate heat transfer in an open VSR. We formulate said model and compare it against full three-dimensional CFD simulations to show that it captures the relevant dynamics while reducing the computational cost enough to allow for online calculations. A linear quadratic Gaussian (LQG) controller is used with the model to perform simultaneous state estimation and feedback control in three simulated scenarios. Our framework proves capable of stabilizing outflow air temperatures during the passing of a cloud, estimating the radiation flux hitting the absorber during daily operation, monitoring temperature cycling in the solid matrix, and avoiding extreme temperature gradients during start-up procedures. Artificial noise and disturbances are added to the system for all scenarios and the LQG controller proves to be robust, rejecting disturbances and attenuating noise, as well as compensating for model uncertainty.es_ES
Patrocinadordc.description.sponsorshipEnerbosch SpA. CORFO Chile under the grant CORFO-Contratos Tecnológicos: 18COTE-89602.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceSolar Energyes_ES
Keywordsdc.subjectVolumetric solar receiveres_ES
Keywordsdc.subjectConjugate heat transferes_ES
Keywordsdc.subjectReduced-order modeles_ES
Keywordsdc.subjectFeedback controles_ES
Keywordsdc.subjectState estimationes_ES
Títulodc.titleConjugate heat transfer model for feedback control and state estimation in a volumetric solar receiveres_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile